
LOAD BALANCING IN DATA CENTER NETWORK

USING SOFTWARE DEFINED NETWORKING

A PROJECT REPORT

Submitted by

PRAKASH KUMAR [Roll No:GAU-C-15/244]
SOURAV BARMAN [RollNo: GAU-C-15/247]

KAUSHIK KUMAR KASHYAP [Roll No: GAU-C-15/256]
SUNITA BORO [RollNo: GAU-C-15/l-377]

Under the guidance of

Mr. RANJAN PATOWARY
(Assistant Professor , Department of Information Technology)

in partial fulfillment for the award of the degree

of

BACHELOR OF TECHNOLOGY
in

INFORMATION TECHNOLOGY

CENTRAL INSTITUTE OF TECHNOLOGY KOKRAJHAR

(Deemed to be University, MHRD, Govt. of India)

MAY 2019

i

CERTIFICATE

Certified that this project report titled “LOAD BALANCING IN DATA
CENTER NETWORK USING SOFTWARE DEFINED NETWORK-
ING” is the bonafide work of “PRAKASH KUMAR [Roll No:GAU-C-
15/244], SOURAV BARMAN [RollNo: GAU-C-15/247], KAUSHIK
KUMAR KASHYAP [Roll No: GAU-C-15/256], SUNITA BORO [RollNo:
GAU-C-15/l-377]”, who carried out the project work under my supervi-

sion. Certified further, that to the best of my knowledge the work reported

herein does not form any other project report or dissertation on the basis

of which a degree or award was conferred on an earlier occasion on this

or any other candidate.

SIGNATURE

Mr. RANJAN PATOWARY
GUIDE
Assistant Professor
Dept. of Information Technology

SIGNATURE

Dr.Amitava Nag
HEAD OF THE DEPARTMENT
Dept. of Information Technology

Signature of the External Examiner

ABSTRACT

Software-defined networking (SDN) is a new network model, and it changes the current

limit network facilities. In SDN, the control logic is separated from network devices

such as routers and switches. Accordingly, network devices only need to transfer data

(data layer), while the control logic is handled by a central controller. A data center net-

work is a facility that centralizes an organizations IT operations and equipment, as well

as where it stores, manages, and disseminates its data. Data centers house a networks

most critical systems and are vital to the continuity of daily operations. Consequen-

tially, the security, reliability and load balancing of data centers and their information is

a top priority for organizations.

For load balancing mechanisms in data center network a new concept of queue-length

directed adaptive routing has been proposed. This approach handles the incoming pack-

ets of the switch by sending out to the output port with the smallest queue-length. We

have modified this method to queue-weightage directed adaptive routing for better re-

sults, our proposed method handles the incoming packets of the switch by sending out

to the output port with smallest queue weightage.

ACKNOWLEDGEMENTS

We would like to express my deepest gratitude to our guide, Mr. Ranjan Patowary for

his valuable guidance, consistent encouragement, personal caring, timely help and pro-

viding me with an excellent atmosphere for doing research. All through the work, in

spite of his busy schedule, he has extended cheerful and cordial support to us for com-

pleting this project work.

We express our heartfelt thanks to our Head of the Department,Dr.Amitiva Nag, who

has been actively involved and very influential from the start till the completion of our

project.

We would also like to thank all teaching and non-teaching staffs of the Information

Technology Department for their constant support and encouragement given to us. Last

but not the least it is our great pleasure to acknowledge the wishes of friends and well

wishers, both in academic and non-academic spheres.

sign:

..

..

..

..

iv

TABLE OF CONTENTS

ABSTRACT iii

ACKNOWLEDGEMENTS iv

1 INTRODUCTION 1
1.1 Introduction . 1

2 LITERATURE SURVEY 3
2.1 Traditional Network . 3

2.2 SOFTWARE DEFINED NETWORKING 4

2.3 SDN FRAMEWORK . 4

2.3.1 APPLICATION LAYER 6

2.3.2 CONTROL LAYER . 6

2.3.3 INFRASTRUCTURE LAYER 6

2.4 BENEFITS OF SDN . 6

2.5 SDN COMPONENTS . 8

2.6 TRADITIONAL NETWORK VS SDN NETWORK 12

2.7 SDN ARCHITECTURE . 13

2.8 OPENFLOW . 14

2.8.1 BENEFITS OF OPENFLOW 15

2.9 DATA CENTER NETWORK . 15

2.9.1 TOPOLOGIES IN DATA CENTER NETWORK 16

2.9.2 FAT TREE TOPOLOGY 18

2.10 LOAD BALANCING . 20

3 WORKDONE 22
3.1 EXISTING SCHEME AND PROPOSED SCHEME: 22

3.2 TESTBED SETUP . 23

3.3 IMPLEMENTATION . 24

3.3.1 QUEUE IMPLEMENTATION ON HOST 26

3.3.2 FLOW TABLE . 26

4 OUTPUT 29

v

4.1 RESULTS . 29

5 CONCLUSION 35

6 FUTURE ENHANCEMENT 36

CHAPTER 1

INTRODUCTION

1.1 Introduction

Data center is a pool of resources (computational, storage, network) interconnected

using a communication network. Data Center Network (DCN) holds a pivotal role in

a data center, as it interconnects all of the data center resources together. DCNs need

to be scalable and efficient to connect tens or even hundreds of thousands of servers to

handle the growing demands of Cloud computing.

For a long time, networking technologies have evolved at a slower pace compared to

other communication technologies. Network equipments such as switches and routers

have been traditionally developed by manufacturers. Each vendor designs his own

firmware and other software to operate their own hardware in a proprietary and closed

way. This slowed the progress of innovations in networking technologies and caused

an increase in management and operation costs whenever new services, technologies or

hardware were to be deployed within existing networks. The architecture of today net-

works consists of three core logical planes: Control plane, data plane, and management

plane. So far, networks hardware have been developed with tightly coupled control and

data planes. Thus, traditional networks are known to be inside the box paradigm[13].

This significantly increases the complexity and cost of network administration and man-

agement. Being aware of these limitations, networking research communities and in-

dustrial market leaders have collaborated in order to rethink the design of traditional

networks.

The principal endeavors of SOFTWARE DEFINED NETWORKING(SDN) are to

separate the control plane from the data plane and to centralize networks intelligence

and state. SDN philosophy is based on dissociating the control from the network for-

warding elements (switches and routers), logically centralizing network intelligence

and state (at the controller), and abstracting the underlying network infrastructure from

the applications. SDN is very often linked to the OpenFlow protocol. OpenFlow (OF)

is considered one of the first software defined networking(SDN) standards. It originally

defined the communication protocol in SDN environments that enables the SDN Con-

troller to directly interact with the forwarding plane of network devices such as switches

and routers, both physical and virtual (hypervisor-based). In this project we are working

on the topic load balancing in Data center network using SDN. In[3], the author used

fat-tree topology and investigated the flow-level valiant Load Balancing(VLB) tech-

nique that uses randomization to deal with highly volatile data center network traffics.

There are two proposed methods, queue-length directed adaptive routing and probe-

based adaptive routing. In probe-based adaptive routing a probe packet is used to in-

vestigate the efficient path to destination, it uses a probe packet with smallest size and

send it to many paths and the packet which reaches first to server is received and all

other packets are ignored and that server gives acknowledgement to the host who has

send the packets, the acknowledgment contains the path from where probe packet has

reached and so all other packet also follows the same path to reach the destination.

In queue-length directed adaptive routing the concept of queue-length size is used for

sending packets to destination.Here for every packet arrives at the switch is sent out

to the output port having the smallest queue length at that instance. In our project we

have modified the queue-length directed adaptive routing method to queue-weightage

adaptive routing to achieve better results.

2

CHAPTER 2

LITERATURE SURVEY

2.1 Traditional Network

Traditional networks rely on physical infrastructure such as switches and routers to

make connections and run properly. In contrast, a software-based network allows the

user to control the allocation of resources at a virtual level through the control plane.

Figure 2.1: Traditional Network

COMPONENTS OF TRADITIONAL NETWORK

Data plane: The act of moving bits that constitute the packet the packet from an in-

coming port to an outgoing port is the responsibility of the data plane. This is also

known as the forwarding plane. For example, in Ethernet switches, packets coming in

from one port are forward out via one or more of the remaining ports.

Control plane: Using the previous example, to forward, to forward the packet to correct

outgoing port, the data plane may need additional information. In the case of Ethernet

switches, the outgoing port is identified using the destination MAC address learnt by

the switch. This act of learning and building awareness about the network is the re-

sponsibility of the control plane. The control plane learns gathers information about the

network using various protocols.

2.2 SOFTWARE DEFINED NETWORKING

Software-defined networking (SDN) technology is an approach to cloud computing that

facilitates network management and enables programmatically efficient network con-

figuration in order to improve network performance and monitoring.SDN is meant to

address the fact that the static architecture of traditional networks is decentralized and

complex while current networks require more flexibility and easy troubleshooting. SDN

attempts to centralize network intelligence in one network component by disassociating

the forwarding process of network packets (data plane) from the routing process (con-

trol plane). The control plane consists of one or more controllers which are considered

as the brain of SDN network where the whole intelligence is incorporated. However, the

intelligence centralization has its own drawbacks when it comes to security, scalability

and elasticity and this is the main issue of SDN.

Figure 2.2: SOFTWARE DEFINED NETWORKING

2.3 SDN FRAMEWORK

A Software defined networking(SDN) architecture (or SDN architecture) defines how a

networking and computing system can be built using a combination of open, software-

based technologies and commodity networking hardware that separate the SDN control

4

plane and the SDN data plane of the networking stack. Traditionally, both the SDN

control plane and data plane elements of a networking architecture were packaged in

proprietary, integrated code distributed by one or a combination of proprietary vendors.

The OpenFlow standard, created in 2008, was recognized as the first SDN architecture

that defined how the control and data plane elements would be separated and commu-

nicates with each other using the OpenFlow protocol. The Open Network Foundation

(ONF) is the body in charge of managing OpenFlow standards, which are open source.

Figure 2.3: SDN FRAMEWORK

In the SDN architecture, the splitting of the control and data forwarding functions is

referred to as disaggregation, because these pieces can be sourced separately, rather

than deployed as one integrated system. This architecture gives the applications more

information about the state of the entire network from the controller, as opposed to tra-

ditional networks where the network is application aware.

5

2.3.1 APPLICATION LAYER

The application layer, not surprisingly, contains the typical network applications or

functions organizations use, which can include intrusion detection systems, load bal-

ancing or firewalls. Where a traditional network would use a specialized appliance,

such as a firewall or load balancer, a software-defined network replaces the appliance

with an application that uses the controller to manage data plane behavior.

2.3.2 CONTROL LAYER

The control layer represents the centralized SDN controller software that acts as the

brain of the SDN network. This controller resides on a server and manages policies and

the flow of traffic throughout the network.

2.3.3 INFRASTRUCTURE LAYER

The infrastructure layers is made up of the physical switches in the network.These

three layers communicate using respective northbound and southbound applications

programming interfaces. For example, applications talk to the controller through its

northbound interface, while the controller and switches communicate using southbound

interfaces, such as openflow although other protocols also exits.

2.4 BENEFITS OF SDN

1. CENTRALIZED NETWORK PROVISIONING Software defined networks pro-
vide a centralized view of the entire network, making it easier to centralize enter-
prise management and provisioning. For example, more VLANs are becoming
part of physical LANs, creating a Gordian knot of links and dependencies. By
abstracting the control and data planes, SDN can accelerate service delivery and
provide more agility in provisioning both virtual and physical network devices
from a central location.

2. HOLISTIC ENTERPRISE MANAGEMENT Enterprise networks have to set up
new applications and virtual machines on demand to accommodate new process-
ing requests such as those for big data. SDN allows IT managers to experiment

6

with network configuration without impacting the network. SDN also supports
management of both physical and virtual switches and network devices from a
central controller; something you cannot do with SNMP. SDN provides a sin-
gle set of APIs to create a single management console for physical and virtual
devices.

3. MORE GRANULAR SECURITY One of the advantages of security defined net-
working that appeals most to IT managers is centralized security. Virtualization
has made network management more challenging. With virtual machines coming
and going as part of physical systems, its more difficult to consistently apply fire-
wall and content filtering polices. When you add in complexities such as securing
BYOD devices, the security problem is compounded. The SDN Controller pro-
vides a central point of control to distribute security and policy information con-
sistently throughout the enterprise. Centralizing security control into one entity,
like the SDN Controller, has the disadvantage of creating a central point of attack,
but SDN can effectively be used to manage security throughout the enterprise if
it is implemented securely and properly.

4. LOWER OPERATING COST Administrative efficiency, improvements in server
utilization, better control of virtualization, and other benefits should result in op-
erational savings. Although it is still early to show real proof of savings, SDN
should lower overall operating costs and result in administrative savings since
many of the routine network administration issues can be centralized and auto-
mated.

5. HARDWARE SAVINGS AND REDUCE CAPITAL EXPENDITURES Adopt-
ing SDN also gives new life to existing network devices. SDN makes it easier to
optimize commoditized hardware. Existing hardware can be repurposed using in-
structions from the SDN controller and less expensive hardware can be deployed
to greater effect since new devices essentially become white box switches with
all the intelligence centered at the SDN controller.

6. CLOUD ABSTRACTION Cloud computing is here to stay and it is evolving into
a unified infrastructure. By abstracting cloud resources using software defined
networking, its easier to unify cloud resources. The networking components that
make up massive data center platforms can all be managed from the SDN con-
troller.

7. GUARANTED CONTENT DELIVERY The ability to shape and control data
traffic is one of the primary advantages of software defined networking. Being
able to direct and automate data traffic makes it easier to implement quality of
services for voice over IP and multimedia transmissions. Streaming high quality
video is easier because SDN improves network responsiveness to ensure a flaw-
less user experience.

7

2.5 SDN COMPONENTS

SDN Consist of different components. Here, we will see all these components and their

duty one by one. What are these SDN Components? The SDN Components are:

1. Network Devices (Data Plane)

2. SDN Controller (Control Plane)

3. Southbound Interface

4. Northbound Interface

5. Network Operating System (NOS)

6. Application and Services (Application Plane)

Figure 2.4: SDN COMPONENTS

NETWORK DEVICES (DATA PLANE): Data Plane is consist of various Network

devices both physical and Virtual. The main duty of data plane is forwarding. In the

previous traditional networks, both control and data plane was in the same device. But

with SDN, network devices has only data plane. So, the main role of these network de-

vices is only Forwarding the data. This provide a very efficient Forwarding mechanism.

8

Figure 2.5: DATA PLANE

SDN CONTROLLER (CONTROL PLANE) [15] SDN Controller is the Center of the

SDN Architecture. In other words, SDN Controller is the brain of the system. The

control of all the data plane devices is done via SDN Controller. It also controls the Ap-

plications at Application Layer. SDN Controller communicates and controls this upper

and lower layer with APIs through Interfaces.

9

Figure 2.6: CONTROL PLANE

SOUTHBOUND INTERFACES

A southbound interface (SBI) is a components lower level interface layer. It is directly

connected to that lower layers northbound interface. It breaks down the concepts into

smaller technical details that are specifically geared toward a lower layer component

within the architecture. In software-defined networking (SDN), the southbound inter-

face serves as the OpenFlow or alternative protocol specification. It allows a network

component to communicate with a lower level component.

10

NORTHBOUND INTERFACE

A northbound interface (NBI) is the interface to a component of higher function or level

layer. The lower layer’s NBI links to the higher layer’s southbound interface (SBI). In

an architectural overview, a NBI is drawn on the top portion of the component or layer

in question and can be thought of as flowing upward, while a SBI is drawn at the bot-

tom, symbolizing a downward flow.

Figure 2.7: INTERFACES

NETWORK OPERATING SYSTEM A network operating system (NOS) is a computer

operating system that is designed primarily to support workstation, personal computer,

and in some instances, older terminal that are connected on a local area network(LAN).

11

Figure 2.8: NETWORK OPERATING

2.6 TRADITIONAL NETWORK VS SDN NETWORK

In Traditional networks, all network devices has Data plane and Control plane. In other

words, Traditional networks are using integrated hardware and software. They makes

their own decision about routing and switching. Whereas, Software-defined networking

Figure 2.9: TRADITIONAL VS SDN NETWORK

(SDN) , is an emerging networking paradigm that gives hope to change the limitations

of current network infrastructures. First, it breaks the vertical integration by separating

12

the network’s control logic (the control plane) from the underlying routers and switches

that forward the traffic (the data plane). Second, with the separation of the control and

data planes, network switches become simple forwarding devices and the control logic

is implemented in a logically centralized controller (or network operating system), sim-

plifying policy enforcement and network (re)configuration and evolution . A simplified

view of this architecture is shown in Fig 2.9. It is important to emphasize that a logically

centralized programmatic model does not postulate a physically centralized system. In

fact, the need to guarantee adequate levels of performance, scalability, and reliability

would preclude such a solution.

2.7 SDN ARCHITECTURE

The separation of the control plane and the data plane can be realized by means of a

well-defined programming interface between the switches and the SDN controller. The

controller exercises direct control over the state in the data plane elements via this well-

defined application programming interface (API).

Figure 2.10: SDN ARCHITECTURE

13

2.8 OPENFLOW

OpenFlow is a protocol that allows a server to tell network switches where to send

packets. In a conventional network,each switch has proprietary software that tells it

what to do. With OpenFlow, the packet-moving decisions are centralized, so that the

network can be programmed independently of the individual switches and data center

gear. In a conventional switch, the data path and the control path occur on the same

device. An OpenFlow switch separates the data path from the control path. The data

path portion resides on the switch itself; a separate controller makes high-level routing

decisions. The switch and controller communicate by means of the OpenFlow protocol.

This methodology, known as SDN, allows for more effective use of network resources

than is possible with traditional networks. OpenFlow has gained favor in applications

such as VM (virtual machine) mobility, mission-critical networks and next generation

IP-based mobile networks.

Figure 2.11: FLOWTABLE

Header Feilds: fields againts which packet can be matched.

Counters : Statistics reporting capabilities.

Actions : Defining how the packet should be treated(forward, drop, modified).

14

2.8.1 BENEFITS OF OPENFLOW

1. OpenFlow-based SDN creates flexibility in how the network is used, operated,
and sold. The software that governs it can be written by enterprises and service
providers using ordinary software environments.

2. It promotes rapid service introduction through customization, because network
operators can implement the features they want in software they control, rather
than having to wait for a vendor to put it in plan in their proprietary products.

3. It lowers operating expenses and results in fewer errors and less network down-
time because it enables automated configuration of the network and reduces man-
ual configuration.

4. OpenFlow-based SDN enables virtualization of the network, and therefore the
integration of the network with computing and storage. This allows the entire IT
operation to be governed more sleekly with a single viewpoint and toolset.

5. It can be easily integrated with computing for resource management and mainte-
nance.

6. OpenFlow-based SDN can better align the network with business objectives.

7. As a standard way of conveying flow-table information to the network devices, it
fosters open, multi-vendor markets.

2.9 DATA CENTER NETWORK

Data center networking is the process of establishing and interconnecting the entire

physical and network-based devices and equipment within a data center facility. It

enables a digital connection between data center infrastructure nodes and equipment

to ensure that they can communicate and transfer data between each other and on an

external network or Internet.

1. Typically, data center networking creates a network infrastructure that is: Stable,
secure and reliable.

2. In line with the industry regulations and meets organization/customer/users needs

3. Supports networking requirements for modern technologies such as cloud com-
puting and virtualization

4. Scalable and can easily meet the requirements of network communications in
peak usage.

5. The components and technologies that make up data center networking generally
include:

15

6. Networking equipment (routers, switches, modems, etc.)

7. Network cabling (LAN/WAN and network interface cabling)

8. Network addressing scheme such as IP V4 or IP V6

9. Network security (security protocols/encryption algorithms, firewalls, IDS)

10. Internet connectivity (satellite, DSL, wireless, optical)

Figure 2.12: DATA NETWORK

11. 6 identical 36-port switches. All ports 1Gbps. 72 Servers.

12. Each edge switch connects to 18 servers. 9 uplinks to first core switch. Other
9links to 2nd core switch.

13. Throughput between any two servers=1 Gbps using ECMP Identical bandwidth
at any bisection.

14. Negative: Cabling complexity.

2.9.1 TOPOLOGIES IN DATA CENTER NETWORK

1. Three-Tier Topology

2. Fat-Tree Topology.

3. D-Cell Topology, etc.

THREE-TIER TOPOLOGY

The legacy three-tier DCN architecture follows a multi-routed tree based network topol-

ogy composed of three layers of network switches, namely access, aggregate, and core

layers. The servers in the lowest layers are connected directly to one of the edge layer

switches. The aggregate layer switches interconnects multiple access layer switches

16

together. All of the aggregate layer switches are connected to each other by core layer

switches. Core layer switches are also responsible for connecting the data center to

the Internet. The three-tier is the common network architecture used in data centers.

However, three-tier architecture is unable to handle the growing demand of cloud com-

puting. The higher layers of the three-tier DCN are highly oversubscribed. More-

over, scalability is another major issue in three-tier DCN. Major problems faced by the

three-tier architecture include, scalability, fault tolerance, energy efficiency, and cross-

sectional bandwidth. The three-tier architecture uses enterprise-level network devices

at the higher layers of topology that are very expensive and power hungry.

Figure 2.13: THREE-TIER TOPOLOGY

17

2.9.2 FAT TREE TOPOLOGY

Fat tree DCN architecture handles the oversubscription and cross section bandwidth

problem faced by the legacy three-tier DCN architecture. Fat tree DCN employs com-

modity network switches based architecture using Clos topology. The network elements

in fat tree topology also follows hierarchical organization of network switches in access,

aggregate, and core layers. However, the number of network switches is much larger

than the three-tier DCN. The architecture is composed of k pods, where each pod con-

tains, (k/2)2 servers, k/2 access layer switches, and k/2 aggregate layer switches in the

topology. The core layers contain (k/2)2 core switches where each of the core switches

is connected to one aggregate layer switch in each of the pods. The fat tree topology

offers 1:1 oversubscription ratio and full bisection bandwidth. The fat tree architecture

uses a customized addressing scheme and routing algorithm. The scalability is one of

the major issues in fat tree DCN architecture and maximum number of pods is equal to

the number of ports in each switch.

Figure 2.14: FAT-TREE TOPOLOGY

18

D-CELL TOPOLOGY

DCell is a server-centric hybrid DCN architecture where one server is directly con-

nected to many other servers. A server in the DCell architecture is equipped with mul-

tiple Network Interface Cards (NICs). The DCell follows a recursively built hierarchy

of cells. A cell0 is the basic unit and building block of DCell topology arranged in

multiple levels, where a higher level cell contains multiple lower layer cells. The cell0

is building block of DCell topology, which contains n servers and one commodity net-

work switch. The network switch is only used to connect the server within a cell0. A

cell1 contain k=n+1 cell0 cells, and similarly a cell2 contains k * n + 1 dcell1. The

DCell is a highly scalable architecture where a four level DCell with only six servers

in cell0 can accommodate around 3.26 million servers. Besides very high scalability,

the DCell architecture depicts very high structural robustness. However, cross section

bandwidth and network latency is a major issue in DCell DCN architecture.

Figure 2.15: D-CELL TOPOLOGY

19

2.10 LOAD BALANCING

Load balancing is a technique used to distribute workloads uniformly across servers or

other compute resources to optimize network efficiency, reliability and capacity. Load

balancing is performed by an appliance – either physical or virtual – that identifies in

real time which server in a pool can best meet a given client request, while ensuring

heavy network traffic doesn’t unduly overwhelm a single server. In SDN load balanc-

ing implied a productive and clever blockage mindful directing resolution. In the light

of SDN condition it is a fundamental limitation to enhance the adaptability and acces-

sibility of network which prompts accomplish greatest number of packets dealt with by

the controller in insignificant time for any application.

Figure 2.16: LOAD BALANCING

With the SDN controller the load balancing design comprises of open flow switch in

which various servers are associated with it. SDN controller keeps p rundown of live

servers that are associated with the open flow switch, and every server is appointed with

static IP address. On an outstanding port 80 web facility is running on every server,

virtual address covers by controller and to the virtual IP address all requests from the

customers are sent. When the customers sends a request to the virtual IP, open flow

20

switch utilized the data contained in bundle header and contrast it and flow passages in

switch and if the customers bundle header data coordinates with flow section, at that

point switch alter the goal virtual IP deliver to the address of one of the servers in view

of load balancing procedure and forward the request to that server.

21

CHAPTER 3

WORKDONE

3.1 EXISTING SCHEME AND PROPOSED SCHEME:

In [3] the author used fat-tree topology and investigated the flow-level valiant Load Bal-

ancing(VLB) technique that uses randomization to deal with highly volatile data center

network traffics. Their two methods have been proposed, queue-length directed adap-

tive routing and probe-based adaptive routing. In queue-length directed adaptive routing

technique, the concept of real time queue-length size is used for sending packets to the

destination. And probe-based adaptive routing uses a probe packet first to investigate

the efficient path to destination it uses a probe packet with smallest size and send it to

many paths and the packet which reaches first to server is received and all other packets

are ignored and that server gives acknowledgement to the host who has send the packets

,the acknowledgment also contains the path from where probe packet has reached and

so all other packet also follows the same path to reach the destination. In our project

we have modified the queue-length directed adaptive routing method to achieve better

results. In queue-length directed adaptive routing method they have used the concept

of queue-length size, queue length size is the no.of packets present in that queue in

real time . For example consider there are four ports in a switch and the three ports

are monitored by a queue, let q1,q2,q3 be three queue whose real time queue length at

an instance found to be 5,3,7 respectively on the ports 1,2,3 respectively and a packet

has arrived in port 4 of the switch then according to the queue-length directed adap-

tive routing among three out-port it will choose the port whose queue length is smallest

hence packet will go out from port 2, because for now the smallest queue length is in

port 2. According to this queue-length directed adaptive routing only queue-length is

considered but for example suppose the port 2 whose length is smallest one and hav-

ing 3 packets in its queue Have the total size of 20kb and in the port 1, the queue q1

whose queue length is 5 have total size of 13kb then this existing solution might give

wrong paths for some packets. Hence we are considering the weightage of queue which

means total size of the packets inside the queue, which determines the weightage of

each queue.

3.2 TESTBED SETUP

We have used Virtual box as a plateform to run mininet. A VirtualBox or VB is a

software virtualization package that installs on an operating system as an application.

VirtualBox allows additional operating systems to be installed on it, as a Guest OS, and

run in a virtual environment. Using mininet we have created our custom topology that

is fat-tree topolgoy and have used pox controller at the control plane.

1. MININET

2. POX CONTROLLER

MININET [11]

Mininet is a network emulator, or perhaps more precisely a network emulation orches-

tration system. It runs a collection of end-hosts, switches, routers, and links on a single

Linux kernel. It uses lightweight virtualization to make a single system look like a com-

plete network, running the same kernel, system, and user code. A Mininet host behaves

just like a real machine; we can ssh into it (if we start up sshd and bridge the network to

your host) and run arbitrary programs (including anything that is installed on the under-

lying Linux system.) In short, Mininets virtual hosts, switches, links, and controllers

are the real thing they are just created using software rather than hardware and for the

most part their behavior is similar to discrete hardware elements. It is usually possible

to create a Mininet network that resembles a hardware network, or a hardware network

that resembles a Mininet network, and to run the same binary code and applications on

either platform. Mininet supports parametrized topologies. With a few lines of Python

code, we can create a flexible topology which can be configured based on the parame-

ters you pass into it, and reused for multiple experiments.

23

POX CONTROLLER [12]

POX is an open source development platform for Python-based software-defined net-

working (SDN) control applications, such as OpenFlow SDN controllers. POX, which

enables rapid development and prototyping, is becoming more commonly used than

NOX

1. Pythonic OpenFlow interface.

2. Reusable sample components for path selection, topology discovery, etc.

3. Runs anywhere,Can bundle with install-free PyPy runtime for easy deployment.

4. Specifically targets Linux, Mac OS, and Windows.

5. Topology discovery.

6. Supports the same GUI and visualization tools as NOX.

POX started life as an OpenFlow controller, but can now also function as an Open-

Flow switch, and can be useful for writing networking software in general.

POX officially requires Python 2.7 (though much of it will work fine with Python 2.6),

and should run under Linux, Mac OS, and Windows.

3.3 IMPLEMENTATION

FAT-TREE TOPOLOGY

To implement Fat-tree topology we have used Mininet as platform. The Fat-tree topol-

ogy is also called as k-ary or k-port Fat-tree topology Where k denotes the no. Of

ports in the switches. A Fat-tree with k number identifies about no. of consisting core

switches,aggregate switches and edge switches. For k-number of ports in a switch the

number of core layer switch is (k/2) and (k/2) no. of pods , pods are the set of k/2 ag-

gregate switches and k/2 edge switches. And then each aggregate switch is connected

24

with (k/2) core layer switch and (k/2) layer of edge switch And then each edge switch

inside the pods are connected with (k/2) no. Of hosts and also associated with (k/2)

no.of aggregate switches.

Figure 3.1: FAT-TREE

25

3.3.1 QUEUE IMPLEMENTATION ON HOST

After implementing Fat-tree we have pinged a server from multiple hosts and found that

there was decreased in bandwidth.So to solve this problem we have created multiple

queues on a single input ports.After creating queues we have again pinged a server with

multiple host and found that there was slightly decreasing in the bandwidth as compared

to earlier results.

Figure 3.2: QUEUE CREATION

3.3.2 FLOW TABLE

The OpenFlow table is a data structure that resides in the high speed data plane of an

open flow switch. Its contents determine the forwarding behavior and packet handling

behavior of that switch.An open flow table has one or more flow entries.

26

Figure 3.3: FLOW TABLE

WORKING

Initially a fat-tree topology of k=4 is created, which consists of 4 core switches 8

aggregate switches,8 edge switches and 16 hosts.All operations have been done on

this fat-tree topology only. In first experiment on this fat-tree topology,a server is re-

quested from a host and the estimated bandwidth between them is resulted around 9.71

MBits/sec, again when the server is requested from another host at the same time, then

there was decrease in throughput. we used Qos policy to deal with this problem. Egress

traffic shaping is configured on the server, where two queues have been created on the

interface of the edge switch connected to the server and an actions have been associated

with both of the queue,for both of the host first action specifies to enter the host 1 in

queue 1 and second action specifies to enter the host 2 in queue 2. once again when the

server is requested from both of the host then there was no decrease in the bandwidth.

Second task of our project was to create a flow table for the switches, A flow table

consists of flow entries, Each flow table entry contains:

1. match fields: to match against packets. These consist of the ingress port and
packet headers, and optionally metadata specified by a previous table.

2. priority: matching precedence of the flow entry.

3. counters: updated when packets are matched.

4. instructions: to modify the action set or pipeline processing.

5. timeouts: maximum amount of time or idle time before flow is expired by the
switch.

6. cookie: opaque data value chosen by the controller. May be used by the con-
troller to filter flow statistics, flow modification and flow deletion. Not used when
processing packets.

27

A flow table entry is identified by its match fields and priority: the match fields and

priority taken together to identify a unique flow entry in the flow table. The flow entry

that wildcards all fields (all fields omitted) and has priority equal to 0 is called the table-

miss flow entry. a flow table is consisted of many flows and each packet arrived at the

switch is matched with these flows in the flow table, and if a packet matches with any

of the flow then corresponding action is applied and the counter is updated whenever

a packet matches the flow,if a packet matches with two flows in a table then the flow

with the highest priority is selected and if there is no flow associated with that packet

then it checks for the table miss entry and the action associated with the table miss

is performed on that packet.and if for a packet does not have flow entry and the table

does not contain the table miss entry then the packet is dropped. We have created a

flow table for the switches containing flows for different operations like switching,flow

switching,firewall,routing and vlan switching.

28

CHAPTER 4

OUTPUT

4.1 RESULTS

We have created h4 as a server and h1 as a host.When host h1 sends packets to server

h4, then the throughput is around 9.71 Mbps.

Figure 4.1: In the beginning, the h1 is sending to h4. The throughput is around
9.71Mbps

This time we have requested the server h4 from two host h1 and h3 at the same time.

Initially when only h1 is sending traffic to h4 the throughput is around 9.71Mbps and

when another host h3 sends traffic at the same time then the throughput between h1-h4

drops and result is around 4.10-5.80 Mbps.

Figure 4.2: When only h1 sends traffic to h4 upto 11.0sec the throughput is constant.

30

Figure 4.3: When the h3 starts to send the traffic to h4, the throughput of H1-h4 drops

31

We have configured egress traffic shaping on the switch connected to server h4,
where we have created two queues q1 and q2 on the interface connected to server
h4 for both the host h1 and h3. And again we have repeated the same process.

Figure 4.4: When only H1 is sending traffic to H4, this flow gets 2.92 Mbps.

32

Here host h1 and h3 sends traffic to the server h4 at the same time.

Figure 4.5: When H1 is sending traffic to H4 at the same time with h3, the flow of
H3-H4 is not affected by H1-H4 flow.

33

Figure 4.6: When H3 starts to send traffic to H4, the flow of H1-H4 is not affected by
H3-H4 flow.

34

CHAPTER 5

CONCLUSION

The present research was planned to find out the efficient load balancing algorithm in

Software Defined Networking (SDN) technology. Our project primarily presents about

the load balancing approaches in software defined networking (SDN), and its imple-

mentation in pox controller. Load balancing strategy was designed in the SDN con-

troller which deals with the various type of load effectively. Different load balancing

parameters were utilized for comparing the performance of load balancing in software

defined networking (SDN). Such parameters are response time, throughput, and avail-

ability.

In this project we have modified an given approach that is queue-length directed adap-

tive routing to queue-weightage directed adaptive routing.

To achieve our goal we have implemented some of the core steps and these are:

we have successfully configured QoS policy in the switches and have also experimented

that how QoS policy can be used for load balancing.Next step was to create flow table

for the Openflow switches, we have successfully created flow table by both of the ap-

proach without using the controller(directly accessing the switches) and by using the

controller also. At the end of our project we summarize with better results for load

balancing.

CHAPTER 6

FUTURE ENHANCEMENT

Future work concerns deeper analysis on queue-weightage directed adaptive routing.

Our future work comprises of finding out the queue-weightage in real time to implement

the queue-weightage directed adaptive routing and to consider optimum length of the

queue for different type of traffics.

REFERENCES

[1] Bruno Astuto A. Nunes, Marc Mendonca, Xuan-Nam Nguyen, Katia Obraczka,

and Thierry Turletti "A Survey of Software DeïňĄned Networking: Past, Present,

and Future of Programmable Networks" Sep 2014

[2] Yosr Jarraya, Member, IEEE, Taous Madi, and Mourad Debbabi, Member, IEEE

"A Survey and a Layered Taxonomy of Software DeïňĄned Networking" Dec 2014

[3] Fei Hu, Qi Hao, and Ke Bao "A Survey on Software DeïňĄned Network and Open-

Flow: From Concept to Implementation" Nov 2014

[4] Diego Kreutz, Member, IEEE, Fernando M. V. Ramos, Member, IEEE, Paulo

Verissimo, Fellow, IEEE, Christian Esteve Rothenberg, Member, IEEE, Siamak

Azodolmolky, Senior Member, IEEE, and Steve Uhlig, Member, IEEE "Software-

DeïňĄned Networking: A Comprehensive Survey" Oct 2014

[5] United States Patent "Flow Based Queuing Of Network" Oct 2011

[6] John P. Lehoczky Department of Statistics Carnegie Mellon University Pittsburgh

"Real-Time Queueing Theory"

[7] Anand V Akella and Kaiqi Xiong "Quality of Service (QoS) Guaranteed Network

Resource Allocation via Software Defined Networking (SDN)" 2014

[8] Yuanhao Zhou, Mingfa Zhu, Limin Xiao, Li Ruan, Wenbo Duan, Deguo Li, Rui

Liu,Mingming Zhu "A Load Balancing Strategy for SDN Controller based on Dis-

tributed Decision" 2014

[9] Seunghoe Gu,Jonghwan Kim,Younghoon Kim,Ikjun YeomâĂă "Controlled Queue

Management in Software-DeïňĄned Networks"

[10] Rihab JMAL and Lamia CHAARI FOURATI "Implementing Shortest Path Rout-

ing Mechanism using Openflow POX Controller"

37

[11] Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet, and Piet De-

meester "In-Band Control, Queuing, and Failure Recovery Functionalities for

OpenFlow"

[12] Santosh Mahapatra Xin Yuan "Load Balancing Mechanisms in Data Center Net-

works"

[13] Karamjeet Kaur, Japinder Singh and Navtej Singh Ghumman "Mininet as Soft-

ware Defined Networking Testing Platform"

[14] Jose David Anzanello "Load Balancing Strategy For SDN Controller Based On

Distributed Decision" Jun 2018

[15] By Yagiz Kaymak, Roberto Rojas-Cessa "Per-Packet Load Balncing In Data Cen-

ter Networks"Nov 2015

[16] Hilmi E. Egilmez, Student Member, IEEE, and A. Murat Tekalp "Distributed

QoS Architectures for Multimedia Streaming Over Software Defined Networks" Oct

2014

[17] Liming Wang, Gang Lu "The Dynamic sub-topology load balancing algorithm for

Data center network"

[18] K Jeong, J Kim, YT Kim "QoS-aware Network Operating System for Software

Defined Networking with generalized openflows" 2012

[19] W Braun, M Menth "Software Defined Networking using openflow: protocols,

applications and architectural design choices" 2014

[20] C Arad "Method for weighted Load Balancing Among network interfaces" 2011

[21] H Kim, N Feamster "Improving Network Management using Software Defined

Networking" 2013

38

	ABSTRACT
	ACKNOWLEDGEMENTS
	INTRODUCTION
	Introduction

	LITERATURE SURVEY
	Traditional Network
	SOFTWARE DEFINED NETWORKING
	SDN FRAMEWORK
	APPLICATION LAYER
	CONTROL LAYER
	INFRASTRUCTURE LAYER

	BENEFITS OF SDN
	SDN COMPONENTS
	TRADITIONAL NETWORK VS SDN NETWORK
	SDN ARCHITECTURE
	OPENFLOW
	BENEFITS OF OPENFLOW

	DATA CENTER NETWORK
	TOPOLOGIES IN DATA CENTER NETWORK
	FAT TREE TOPOLOGY

	LOAD BALANCING

	WORKDONE
	EXISTING SCHEME AND PROPOSED SCHEME:
	TESTBED SETUP
	IMPLEMENTATION
	QUEUE IMPLEMENTATION ON HOST
	FLOW TABLE

	OUTPUT
	RESULTS

	CONCLUSION
	FUTURE ENHANCEMENT

