2022

APPLIED PHYSICS

Full Marks: 100

		Time: Three hours	
		The figures in the margin indicate full marks for the questions:	
		Answer any five questions.	
		OF	
1.	a)	Write the four Maxwell's Fundamental Equations in the electromagnetic	4
		field in integral and differential form?	
	b)	Show that electromagnetic wave is transverse in nature.	5
	c)	Show that electromagnetic energy is equally contributed by electric and magnetic fields equally.	5
	d)	Evaluate displacement current density $ec{p}$ and electric field intensity $ec{E}$ for the	6
		given field $\vec{H} = 0.25 \varepsilon_o \cos(\omega t - 10z) \hat{a}_v (A/m)$.	
2.	a)	Derive the Poynting theorem starting from Maxwell's fundamental equations in electromagnetism.	6
	b)	What is the physical significance of the Poynting vector? The average intensity of the sunlight reaching the earth's surface is about 1300 W.m ⁻² .	2 + 5 = 7
		Calculate the strength of the electric field of the incoming sunlight.	
	c)	What is the reason for the attenuation of electromagnetic waves in a conducting medium?	2
	d)	Define Skin depth. For silver the conductivity $\sigma = 3 \times 10^7 mho. m^{-1}$. Find its skin depth at a frequency of 10GHz.	2 + 3 = 5
3.	a)	What is the structure of an optical fibre?	3
	b)	Mention and explain briefly the different types of optical fibre.	5
	c)	Write some of the applications of optical fibre and its advantages over the usage of conventional transmission lines.	3+3 = 6
	d)	What do you mean by the Numerical Aperture of an optical fibre?	2
	e)	A fibre has a refractive index of its core of 1.46 and cladding of 1.45. Compute the NA and the fractional difference in the refractive index.	4
4.	a)	Write short notes on attenuation, dispersion and V-parameter in the optical fibre communication system.	$2 \times 3 = 6$
	b)	Explain the propagation mechanism of the light signal through an optical fibre.	4
	c)	Explain the details of the optical fibre communication system with block	10

		diagrams.	
5.	a)	What are thin films?	2
	b)	Write short notes (any two): Physical Vapor Deposition (PVD), Chemical	5 x 2 = 10
		Vapor Deposition (CVD), Sputtering Technique.	
	c)	Mention the usage of the following thin film characterization techniques.	5
		X-Ray Diffraction(XRD), Scanning Electron Microscope (SEM), UV/VIS	
		Spectrometer (UV-VIS), Energy dispersive X-ray Spectroscopy (EDX),	
		Transmission Electron Microscopy (TEM)	
	d)	Write some of the important applications of thin film in devices.	3
6.	a)	Explain the four types of polarization in the dielectric material.	8
	b)	What are piezoelectric materials? Mention a few important piezoelectric materials most used.	2 + 3 = 5
	c)	What are ferromagnetic materials? What is Curie Temperature?	4
	d)	Mention some of the important applications of ferromagnetic material.	3
7.		Write short notes on (any four)	$5 \times 4 = 20$
7.		X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM),	
		Transmission Electron Microscopy (TEM), Atomic Force Microscopy	
		(AFM), Differential Scanning Calorimeter (DSC)	
		ctifute of rechine	
		Jentral Institute	
		Senth	