Total number of printed pages: 01

UG/1st Semester/UPH101

6

2023

ENGINEERING PHYSICS

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

- 1. a) If 'V' and 'F' are respectively scalar and vector, then find the value of the 20 following vector identities.
 - (i) $\vec{\nabla} \times (\vec{\nabla} \vec{V})$ (ii) $\vec{\nabla} . (\vec{\nabla} X \vec{F})$ krajhar : : Bodoland

Ζ.	a)	Define gradient of a scalar field, divergence of a vector field and curl of a	10
		vector field	
	b)	Discuss the displacement current and the equation of continuity.	10
3.		State Gauss's law in electrostatics. Apply Gauss's law to calculate the electric field intensity due to a uniformly charged cylinder at points	20

(i) inside the cylinder

6.

- (ii) at the surface of the cylinder
- (iii) outside the cylinder

4.	Using the Schrodinger wave equation, prove that the energy of a particle	14
	travelling in one dimensional box is quantized.	

- b) Calculate the de Broglie wavelength associated with a proton moving with a velocity equal to (1/20)th of the velocity of light.
- 5. a) Write down the Schrodinger time dependent and independent wave equations.
 - b) Define acceleration, time period, frequency and phase of a simple harmonic 6 motion.
 - c) Define damped harmonic oscillation and find the under damped solution
 a) State and explain 1st and 2nd law of thermodynamics.
 - b) What is the basic difference between Fresnel and Fraunhofer diffraction? 4
 - c) Derive an expression for diameter of dark and bright ring in reflected light 10 of Newton's ring experiment.
- 7. a) Write down the basic characteristics of LASER radiations.
 b) Write and discuss the components of He-Ne LASER system
 10