Total number of printed pages: 2

UG/3rd/UMA302/July-Dec 2024

2024

DISCRETE MATHEMATICS

Full Marks: 100 Time: Three hours *The figures in the margin indicate full marks for the questions. Answer any five questions.*

1.	a)	Find the number of lines of a complete graph K_p .	5
	b)	Show that self-complementary graph has $4n \text{ or } 4n + 1$ vertices.	5
	c)	If G is a graph in which the degree of every vertex is at least two then G contains a cycle.	5
	d)	Prove that the finite non-empty poset (A, \leq) has at least one maximal and one minimal element in A	5
2.	a)	Show that every cubic graph has an even number of points	4
	b)	The edge connectivity of a graph G cannot exceed the minimum degree of a vertex in G. i. e. $\lambda(G) \leq \delta(G)$	6
	c)	Consider a lattice L. Prove that the relation $a \leq b$ defined by either	5
		$a \wedge b = a$ or $a \vee b = b$ is a partial ordering on lattice L.	
	d)	Show that in a Boolean algebra, the complement of every element is unique.	5
3	a)	Prove that every distributive lattice is modular.	5
	b)	For any Boolean algebra $(B, \vee, \wedge, ', 0, 1)$ prove that $(a \vee b)' = a' \wedge b'$ and $(a \wedge b)' = a' \vee b'$, for all a, b in B.2006	5
	c)	Find the CNF of the Boolean expression by truth table method $f(x, y, z) = (x \land y')$	5
	d)	Find the DNF of the Boolean expression by truth table method $f(x, y, z) = (x \land y) \lor (y \land z')$	5
4.	a)	Prove that for a bounded distributive lattice L, the complement are unique if they exist.	2X2 = 4
	b)	Give an example to show that a modular lattice may not be distributive.	4
	c)	A connected graph G has an Eulerian trail iff it has at most two odd vertices. That is, it has either no vertices of odd degree or exactly two vertices of odd degree.	6
	d)	Define bipartite graph. Prove that a graph which contains a triangle cannot be bipartite.	1+5=6
5.	a)	Show that a graph is a tree if and only if every two points in it is joined by a unique path.	3+3=6
	b)	Prove that a tree T with n vertices has $(n - 1)$ edges.	4

	c)	Prove that the power set of S under \subseteq , is a poset. Draw the Hasse diagram	4+2=6
		of the poset (P(S), \subseteq), where S = {a, b, c, d}.	
	d)	Define isomorphism between lattices. Show that the lattice $L = \{1, 2, 3, 6\}$	4
		under the divisibility and the lattice $(P(S), \subseteq)$ where $S = \{a, b\}$, are	
		isomorphic.	
6.	a)	Show that the degree of a vertex of a simple graph on n-vertices cannot	3+2 =5
		exceed $(n-1)$. Does there exists a 4-regular graph on 6 –vertices? If so	
		draw such graph.	
	b)	Define acyclic graph. If $G(p, q)$ is a connected graph in which $p = q + 1$,	1 + 4 = 5
		show that G is acyclic.	
	c)	Define totally ordered set.	1 + 4 = 5
		Give one example of each of the following:	
		(i) Symmetric but not anti-symmetric	
		(ii) anti-symmetric but not symmetric Of Technology	
		(iii) Both symmetric and anti-symmetric odoland	
		(iv) Neither symmetric nor antisymmetric	
	d)	Give an example (with justification) of a poset A and a non-empty subset S	5
		of A such that S has lower bounds in A but glb(S) does not exist.	
