2023

DISCRETE MATHEMATICS

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1.	a)	Prove that $A - (B \cup C) = (A - B) \cap (A - C)$	5
		If $f: A \to B$ and $g: B \to C$ be two invertible functions then show that	5
	b)	$g_0 f: A \to C$ is also invertible.	
	c)	If I be the set of all integers, then show that the relation R on I defined by ${}_{x}R_{y}$ if and only if x - y is divisible by 3, (for all integers x and y) is an equivalence relation.	5
	d)	Show that the set $G = \{1, -1, i, -i\}$ is a group under multiplication, where i is the imaginary unit.	5
	,	Define coset in a group. Give an example with justification.	3
2.	a) b)	Prove that the inverse of the product of two elements of a group is the product of their inverses in reverse order.	5
	c)	Show that intersection of subgroups of a group is a subgroup. Provide an example to illustrate that the union of two subgroups may not necessarily be	5 + 2
		a subgroup. A subgroup. A subgroup that (i) $x + x = x$	5
	d)		
		and (ii) $(x^{f})^{f} = x$, for every $x \in B$.	6
3.	a)		O
		f(x,y,z)=x+yz.	7
	b		7
	c	Define and provide one example for each of the following	/
		(i) Normal Subgroup (ii) Homomorphism of a group (iii) Field	
4.	a	of each of the following statements	1+1+1=3
٦,	u	(i) He swims if and only if the water is warm.	

		(ii) If he studies, he will pass the examination.	
		(iii) $2 + 4 = 6$ and $7 < 11$	
	b)	Examine whether the following proposition is tautology:	5
		$p \lor [\sim p \to (q \lor (q \to (\sim r)))]$	
	c)	Define minterm and maxterm of two statement variables. Find the Principal Disjunctive Normal Form of the following compound proposition:	2+5= 7
		$(p \land \sim q \land \sim r) \lor (q \land r)$	
	d)	Represent the following argument:	2+3=5
		If the last digit of this number is a 5, then this number is divisible by 5.	
		The last digit of this number is a 5.	
		Central Institute Of Technology	
		This number is divisible by 5.	
		Symbolically and determine whether the argument is valid.	
5.	a)	Construct the truth table of the following compound proposition	4
		$(p \to q) \lor (p \to r) \leftrightarrow (q \land r)$	
	b)	Is there a simple graph corresponding to the following degree sequences?	2+2=4
		(i) 1, 1, 2, 3	
		(ii) 2, 2, 4, 6	
	c)	Show that self-complementary graphs have 4n or 4n -1 vertices	5
	d)	Define kernel of a homomorphism between groups.	2 +5 =7
		Let G and H be two groups with identities e and e', respectively.	
		If $f: G \to H$ is a homomorphism, the prove that the kernel of f is an normal subgroup.	
6	a)	Show that the maximum number of edges in a simple graph with m vertices is $m(m-1)/2$.	5
	b)	Prove that the edge connectivity of a graph G cannot exceed the minimum degree of a vertex in G.	5
	c)	Define Eulerian graph. Give an example of a graph which is Hamiltonian but not Eulerian and vice-versa.	1+2+2 = 5
	d)	Show that every cubic graph has an even number of vertices.	5
		ታ ታ ታ ታ ታ ታ ታ ታ ታ ታ ታ ታ ታ ታ ታ ታ ታ ታ ታ	