Total number of printed pages: 3

UG/3rd/UMA302

2022

DISCRETE MATHEMATICS

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions. LOKISIK

Answer any five questions.

1. State true or false : a)

- The ring of all integers is an Integral domain. i)
- If S be the set of people, then the relation R on S defined by $_{x}R_{y}$ if x is ii) father of *y* is Symmetric.
- The function $f: R \to R$ defined by $f(x) = x^2$ is many-one into. iii)
- In the multiplicative group $\{1, w, w^2\}$, the order of w is 2. iv)
- The inverse of every element in a group is unique. v)

b) Fill up the blanks:

- If the function $f: A \rightarrow B$ is invertible, then its inverse is..... i)
- Every subgroup of an abelian group is ii)
- The order of each subgroup of a finite group is a of the order of iii) the group.
- Every cyclic group is iv)
- Every field is an v)

C)	Prove that $A - (B \cup C) = (A - B) \cap (A - C)$	5
----	--	---

d) If $f: A \to B$ and $g: B \to C$ be two invertible functions then show that 5 $g_{of}: \mathbf{A} \to \mathbf{C}$ is also invertible.

If *I* be the set of all integers, then show that the relation *R* on *I* defined by **b**) $_{x}R_{y}$ if and only if x-y is divisible by 5, (for all integers x and y) is an equivalence relation.

1x 5=5

1x 5=5

	c)	Show that, a non-empty subset <i>H</i> of a group <i>G</i> is a subgroup of <i>G</i> if and only if $a \in H, b \in H$ implies $ab^{-1} \in H$.	8
	d)	Define cyclic group. Give an example.	2
3.	a)	Show that if <i>H</i> and <i>K</i> are two normal subgroups of a group <i>G</i> , then <i>HK</i> is normal subgroup of <i>G</i> if $HK = KH$.	5
	b)	Show that the set R of all real numbers is a ring under addition and multiplication.	7
	c)	Show that if $(B, +, ., /)$ is a Boolean Algebra, then show that (i) $x + x = x$ and (ii) $(x')' = x$, for every $x \in B$.	2+3=5
	d)	Find the Disjunctive Normal Form (DNF) of the Boolean function $f(x, y, z) = y + xz$.	3
4.	a)	Prove that in any graph there is an even number of vertices of odd degree.	5
	b)	State and prove the Handshaking Lemma	1+4=5
	c)	Use a truth table to determine whether the following arguments form is valid:	5
		pvq	
		$p \rightarrow r$	
		$q \to r$	
	d)	Test the validity of the following arguments:	5
		"Some rational numbers are powers of 5. All integers are rational numbers. Therefore some integers are powers of 5"	
5.	a)	Consider the set S= $\{2, 4, 5, 10, 15, 20\}$ and consider the partial order \leq	4+3=7
		is the divisibility relation. Then examine whether (S, \leq) is poset or not.	
		If S is a poset, then find minimal elements and maximal elements.	
	b)	Find the number of edges in a complete graph with n vertices.	4
	c)	Let G be a simple graph with at least two vertices. Prove that G has at least two vertices of same degree.	5
	d)	Define walk, path and trail of a graph with example.	4

6.	a)	Prove that a connected graph with p vertices and (p -1) edges is a tree.	5
	b)	Define tree, forest in graphs. Prove that a tree with n vertices has (n-1) edges.	2+3=5
	c)	Determine the number of edges in a graph with 6 vertices, two of degree 4 and four of degree 2.	3
	d)	Find the maximum number of vertices in a connected graph having 17 edges.	3
	e)	Draw a graph (if it exists) having the following properties or explain why no such graph exists:	4
		A graph with 4 edges and 4 vertices having degree 1, 2, 3 and 4.	

		01091	
		stitute of technology k	
		entralmstitute	
	C	enti	