Total number of printed pages:3

UG/3rd/UMA302

2021

DISCRETE MATHEMATICS

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions. Answer Q. No. 1(compulsory) and any four from Q.No.2-7.

a) State True or False:

1 x 10=10

1 x 5=5

- i) The multiplication group $\{1,$ -1} is a subgroup of the multiplicative group $\{1,$ -1, i, -i\}.
- ii) If H and K are two normal subgroups of a group G, then their union may be normal subgroup of G.

iii) Let G and K be two groups and let $f: G \to K$ be a group homomorphism. Then Ker f is a normal subgroup of G.

iv) The ring of integers has zero divisors.

v) A field can be defined as a commutative division ring.

vi) The function $f: R \to R$ defined by $f(x) = x^2$ is many one.

vii) If S be the set of people, then the relation R on S defined by xRy if x is father of y is not transitive.

viii) If R and S are two equivalence relations on a set A, then $R \cup S$ may not be an equivalence relation on A.

ix) If $A = \{1, 2, 3, 4\}$, then power set of A contains 15 elements.

x) Compositions of functions is an associative operation.

b) Fill in the blanks:

i) If R and S are relations from Ato B, then $(R \cap S)^{-1} = \dots$

ii) If $f: A \to B$ is one-one onto, then $f^{-1}: B \to A$ is

iii) The cardinality of the multi set {a, a, b, b, c} is.....

1

v) If $A = \{a, b, c\}$, then the identity relation	n on A is		
Choose the correct option:		1x5 = 5	
i) A closed walk in which no vertex (exce more than once is called a/an/trail].			
ii) Choose the correct statement:			
[A] Every walk is a path [B] E	Every circuit is a path		
[C] Every loop is a circuit [D] T always distinct.	The origin and terminal of a walk are		
iii) If a simple graph has 15 edges, then su is [25/24/50/30]	m of the degrees of all the vertices		
iv) If a graph G has 7 vertices and 9 edges matrix is [7×7 / 7×9 / 9	, then the size of the adjacency ×9 / None of these]		
v) Which of the following is not a logical	statement?		
[A] Today is Monday [B] There is no rain without cloud			
[C] If the diagonals of quadrilateral bisect	each other then it is a parallelogram		
[D] Square of a real number is always neg	ative.		
Prove that a simple graph with at least two same degree.	o vertices has at least two vertices of	5	
Show that the maximum number of edges $\frac{p(p-1)}{2}$.	in a simple graph with p vertices is	4	
Prove that the edge connectivity of a graph degree of a vertex in G.	h G cannot exceed the minimum	5	
Prove that a tree T with n-vertices has (n-	1) edges.	6	
In a group (G, \star) and a, b be any two elements then prove the followings	ents in G and e is the identity element	6	
i) if $b * a = e$, then $a * b = e$	ALAN WORD		

2.

3.

2

		iii) for all $a \in G$, there is only one $b \in G$ satisfying $b * a = e$.		
	b)	Prove that a finite integral domain is a field.	4	
	c)	Show that the multiplicative group $G = \{1, \omega, \omega^2\}$ is a cyclic group. Find all the generator(s) of the cyclic group G.	3+2=5	
	d)	Define Integral Domain. Examine whether $(Z, +, .)$ is an integral domain or not.	2+3=5	
	a)	Give an example of a graph which is Hamiltonian but not Eulerian and vice-versa.	2+2=4	
	b)	Define spanning tree. Prove that if there is one and only one path between every pair of vertices in G, then G is a tree.	6	
	c)	Find the truth table of the proposition	5	
		$(\sim p \land (\sim q \land r)) \lor (q \land r) \lor (p \land r).$		
	d)	Find the principal conjunctive normal form using the truth table of the compound position	5	
		$(p \wedge q) \vee (\sim q \wedge r).$		
5.	a)	Prove that $A \times (B \cup C) = (A \times B) \cup (A \times C)$.	5	
	b)	Let $f: A \to B$ and $g: B \to C$ be two invertible functions, then show that gof is also invertible. Also, show that $(gof)^{-1} = f^{-1} \partial g^{-1}$.	10	
	c)	If <i>I</i> be the set of all integers, then show that the relation <i>R</i> defined on <i>I</i> by xRy if and only if $x - y$ is divisible by 3, for all $x, y \in I$ is an equivalence relation on <i>I</i> .	5	
5.	a)	Prove that the function $f: R \to R$ defined by $f(x) = 2x^3 - 1$ is one-one onto.	5	
	b)	If R and S are two equivalence relations on a set A, then show that $R \cap S$ is an equivalence relation on A.	7	
	c)	Write all the operations on multi sets.	8	
		(San Zul LIBRAR) *		