2+2+3=7

6

7

6

4.

2024

ENGINEERING MATHEMATICS III

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1.		Find Laplace Transform of the following functions (any four):			
		(i) $t^5 e^{-5t}$ (ii)	ii) tcosat	(iii) $e^{-\alpha t} cos \beta t$	
		(iv) $t^4 e^{3t}$	(v) t ² sint		5x4=20
2.	a)	Evaluate:			344-20
		(i) $L^{-1}\left\{\frac{1}{s^2(s+1)^2}\right\}$ (ii) $L^{-1}\left\{\frac{6s-4}{s^2-4s+20}\right\}$			
		(iii) $L^{-1}\left\{e^{-5s}\frac{1}{(s-2)^4}\right\}$			5x3=15
	b)	If $L\{F(t)\}=f(s)$, then show that $L\{F(at)\}=\frac{1}{a}f\left(\frac{s}{a}\right)$.			e a
		OR			
		Find $Z[{f(k)}]$, if $f($	$(k) = \begin{cases} 5^k, & k \\ 3^k, & k \end{cases}$	< 0 ≥ 0	5
3.	a)	(i) When is a complex	x function $f(z)$	= u(x,y) + iv(x,y) analytic?	
		(ii) Is the function $f(z) = \cos x \sin y + i \sin x \cos y$ analytic? Justify.			
		(iii) Determine a, b, c, d so that the function $f(z) = (x^2 + axy + by^2) + i(cx^2 + dxy + y^2)$ is analytic.			2+2+3=

b) Show that the function $f(z) = |z|^2$ is differentiable only at the origin.

are harmonic functions but u + iv is not analytic function of z.

c) Given that $u = x^2 - y^2$ and $v = 2x - x^3 + 3xy^2$, prove that both u and v

Evaluate the complex integral $\int_C \frac{3z+4}{z(2z+1)} dz$ where C is the circle |z| = 1.

- b) Determine the poles of $f(z) = \frac{z-3}{(z-2)^2(z+1)}$ and residues at its poles, and hence evaluate $\int_C f(z)dz$ where C is |z| = 2.
- c) Show that the function $u = x^3 2xy 3xy^2$ is harmonic. Find its harmonic conjugate v and express f(z) in terms of z.
- 5. a) Using Lagrange's Method Solve(any one):

(i)
$$x^2p + y^2q = (x + y)z$$

(ii)
$$(x^2 - y^2 - z^2)p + 2xyq = 2xz$$

b) Find the complete solution of

(i)
$$p^2 + q^2 = x^2 + y^2$$

(i)
$$p + q = x + y$$

(ii) $z^2(p^2 + q^2 + 1) = 1$

6. a) Solve:

(i)
$$\frac{\partial^2 Z}{\partial x^2} + \frac{\partial^2 Z}{\partial x \partial y} - 6 \frac{\partial^2 Z}{\partial y^2} = y \cos x$$

(ii)
$$\frac{\partial^2 Z}{\partial x^2} + 2 \frac{\partial^2 Z}{\partial x \partial y} + \frac{\partial^2 Z}{\partial y^2} = x^2 + xy + y^2$$
 6x2=12

b) Using the method of separation of variable solve, $3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 3u$, given that $u(x, 0) = 4e^{-x}$.
