2023

ENGINEERING MATHEMATICS III

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1. a) (i) If
$$L\{F(t)\} = f(s)$$
, then $L\{F(at)\} =$ ______ (1x5=5)

(ii)
$$L{3t^2 + 2t + sint} = \underline{\hspace{1cm}}$$

(iii)
$$L^{-1}\left\{\frac{3s+2}{s^3} - \frac{s-9}{s^2+4}\right\} = \underline{\hspace{1cm}}$$

(iv)
$$L\{e^{at} - cost\} =$$

(v) If
$$Z[\{f(k)\}] = F(z)$$
, then $Z[\{f(k \pm n)\}] =$ _____

b) If
$$L\{F(t)\} = \frac{e^{-\frac{1}{s}}}{s}$$
, find $L\{e^{-t}F(3t)\}$. (5)

$$(5x2=10)$$

(i)
$$e^{-kt}(Acost + Bsint)$$

(ii)
$$\frac{cosat-cosbt}{t}$$

(iii)
$$t^2 sint$$

$$(5x2=10)$$

(5)

(iii)
$$t^2 sint$$

a) Evaluate (Any two):

(i) $L^{-1}\left\{\frac{3s+7}{s^2-2s-3}\right\}$

(ii)
$$L^{-1}\left\{\frac{s}{(s^2+a^2)^2}\right\}$$

(iii)
$$L^{-1}\left\{\frac{6}{2s-3} - \frac{3+4s}{9s^2-16} + \frac{8-6s}{16s^2+9}\right\}$$

b) Find
$$Z[\{f(k)\}]$$
, if $f(k) = 5^k$, $k < 0$
= 3^k , $k \ge 0$

$$=3^k \qquad , k \ge 0$$

c)
$$Y'' + 9Y = \cos 2t$$
, given $Y(0) = 1$, $Y(\frac{\pi}{2}) = -1$ (5)

3. a) (i) If
$$F(u, v) = 0$$
 and u and v are functions of x, y, z , then find the partial derivative of it w.r.t y .

(ii) Write the Auxiliary equations of Charpit's method.

(iii) What is the special equation name of
$$Z = px + qy + 2\sqrt{p+q}$$
?

		(v) Write the complementary function of $\frac{\partial^3 Z}{\partial x^3} - 4 \frac{\partial^3 Z}{\partial x^2 \partial y} + 4 \frac{\partial^3 Z}{\partial y^3} = 0$.	
	b)	Solve:	(2x5=10)
		(i) $4\frac{\partial^2 Z}{\partial x^2} - 4\frac{\partial^2 Z}{\partial x \partial y} + \frac{\partial^2 Z}{\partial y^2} = 16 \log(x + 2x)$,
		(ii) $\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = x^2 + xy + y^2$	
	c)	Using the method of separation of variable solve, $3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 3u$, given	(5)
		that $u(x,0) = 4e^{-x}$	
4.	a)	Using direct integration method, solve: $\frac{\partial^3 z}{\partial x^2 \partial y} + 18xy^2 + \sin(2x - y) = 0$	(3)
	b)	Using Lagrange's method Solve : (i) $x^2p - y^2q = (x + y)z$	(7)
		(ii) $\frac{y^2z}{x}p + xzq = y^2$	
	c)	Find the complete solution of the following (Any one):	(4)
		(i) $p^2 + q^2 = x^2 + y^2$	
	•	(ii) $z^2(p^2+q^2+1)=1$	
	d)	Using Charpits' method solve: $2xz - px^2 - 2qxy + pq = 0$	(6)
5.	a)	Answer the following (i) When is a complex function $f(z) = u(x, y) + iv(x, y)$ analytic?	(1x6=6)
		(ii) Is the function $f(z) = 3x^2y + i2xy$ analytic? Justify	
		(iii) If $f(z) = (x + \alpha y) + i(bx + y)$ is analytic then α is equal to (iv) The value of m so that $2x - x^2 + my^2$ may be harmonic is	
		(v) $f(z) = \bar{z} ^2$ is differentiable only at	
		(vi) The value of $\int_C \frac{z^2+2z}{z+3} dz$, where C is $ z = 1.5$ is	
	b)	Show that the function $f(z) = z^3$ is analytic in the entire z-plane and find	(7)
		f'(z).	
	c)	Given that $u = x^2 - y^2 + 2y$ and $v = x^3 - 2xy - 3xy^2$, prove that both	(7)
_	_	u and v are harmonic functions but $u + iv$ is not an analytic function of z .	
6.	a)	Evaluate the complex integral $\int_C \frac{1-2z}{z(z-1)(z-3)} dz$ where C is the circle	(6)
		z = 2	

(iv) Write the nth order linear homogeneous partial differential equation.

- Determine the poles of $f(z) = \frac{3z^2 + z + 1}{(z^2 1)(z + 3)}$ and residues at its poles, and hence evaluate $\int_C f(z) dz$ where C is |z| = 2
- c) Define a harmonic function. Show that the function u = 4xy 3x + 2 is harmonic and find its harmonic conjugate. Construct the corresponding analytic function f(z) = u(x, y) + iv(x, y) and express f(z) in terms of z.

