Total number of printed pages: 02

UG/1st /UMA101

2024

ENGINEERING MATHEMATICS-I

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions. ? margin mars Answer any five questions.

1.	a)	Find the centre and radius of curvature of $y = 3x^2 + xy + y^2 - 4x$ at (0.0).	5
	b)	What kind of improper integral is $\int_{1}^{2} \frac{x}{x\sqrt{x^2-1}} dx$? Examine its convergence.	5
	c)	Use Comparison test to examine the convergence of $\int_0^1 \frac{1}{x^{\frac{1}{3}}(1+x^2)} dx$	5
	d)	Verify that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$ where $u = \log_e \left(\frac{x^2 + y^2}{xy}\right)$	5
2.	a)	Show that (i) $\beta\left(\frac{1}{2}, \frac{1}{2}\right) = \left\{\gamma\left(\frac{1}{2}\right)\right\}^2$ and (ii) $\frac{\gamma\left(\frac{7}{2}\right)\gamma\left(\frac{3}{2}\right)}{2\gamma(6)} = \frac{\pi}{128}$	5
	b)	Use Beta & Gamma functions to show that $\int_0^\infty \frac{x}{1+x^6} dx = \frac{\pi}{3\sqrt{3}}$	5
	c)	Find the volume of the solid generated by revolving the cardioid $r = a(1 + \cos \theta)$ about the initial line.	5
	d)	Find the surface area of the sphere of radius 'a', the equation of the circle being $r = a$	5
3.	a)	Verify Rolle's Theorem for $f(x) = x^3 + 3x^2 - 24x - 80$ in [-4, 5]	5
	b)	Verify Lagrange's Mean Value Theorem for $f(x) = x(x-1)(x-2)$ in $\left[0, \frac{1}{2}\right]$	5
	c)	Evaluate $\lim_{x \to 0} \frac{\tan x - x}{x^2 \tan x}$	5
	d)	Find the maximum and minimum values of $f(x) = (2x - 1)^2 + 3$	5
4.	a)	Discuss the continuity at the origin of $f(x, y) = \begin{cases} \frac{1}{x^2 + y^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases}$	5
	b)	Find the values of x and y for which $f(x, y) = x^2 + y^2 + 6x - 12$ has a	5
		minimum value, Also find this minimum value.	
	c)	Find the first 3 terms in the Maclaurin's series for	5X2=10

	(i) $\sin^2 x$ (ii) xe^{-x}	
	Test the Convergence of the following series:	4X5=20
	(i) $\sum u_n$, where $u_n = \frac{3^n + 1}{4^n + 1}$	
	(ii) $\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots \dots \dots$	
	(iii) $\frac{2!}{3} + \frac{3!}{3^2} + \frac{4!}{3^3} + \cdots \dots \dots \dots$	
	(iv) $1 + \frac{x}{2} + \frac{x^2}{5} + \frac{x^3}{10} + \dots \dots \dots$	
a)	Changing the order of the integration evaluate the following integrals:	3X2=6
	(i) $\int_0^1 \int_x^{2-x} \frac{x}{y} dx dy$ (ii) $\int_0^{4a} \int_x^{2\sqrt{ax}} dx dy$ obtained by Bodoland	
	$(1) J_0 J_{\frac{1}{4a}}$	
b)	Find the area that lies inside the cardioid $r = a(1 + cos\theta)$ and outside the circle	4
	r = a	
c)	Find the coordinates of the centre of gravity of the positive octant of the sphere	6
	$x^2 + y^2 + z^2 = a^2$, the density being given $kxyz$	
d)	If $r^2 = x^2 + y^2 + z^2$, show that $\nabla f(r) = \frac{f'(r)}{r}\vec{r}$ and hence show that	4
	$\nabla \int r^n dr = r^{n-1} \vec{r}$	
a)	Find the directional derivative of the scalar point function $\phi = 3e^{2x-y+z}$ at the	5
	point A(1,1,-1) in the direction towards the point B(-3,5,6)	
b)	Find div V and cul V if $V = \nabla(x^3 + y^3 + z^3 + 3xyz)$	4
c)	Find the line integral, $\int_c (x^2 + y^2) dx + (y + 2x) dy$, where C is the closed	5
	boundary of the region in the first quadrant, that is bounded by the curves $y^2 - x$ and $x^2 - y$.	
d)	$y = x \tan x = y$ Norify the Green's lemma in the vy plane for $f_{1}(xy + y^{2}) dx + y^{2} dy$, where f_{2} is	6
-)	the elected surve of the region bounded by $y_c (xy + y) (ax + x) (ay)$, where C is	~
	the closed curve of the region bounded by $y = x$ and $y = x^{-1}$	

5.

6.

7.