UG/1st /UMA101

2023

ENGINEERING MATHEMATICS-I

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Question no.1 is compulsory and answer any four from the questions no 2-7

1. a) Fill in the blanks

- (i) If $\sqrt{x} + \sqrt{y} = 5$ then y_2 equals _____
- (ii) The equation of the tangent line to the curve $y = 2x \sin x$ at the point $(\frac{\pi}{2}, \pi)$ is _____
- (iii) The angle of intersection of the curves $y = x^2$ and 6y = 7 3x at (1,1) is _____
- (iv) The length of the subnormal at the point (1,3) of the curve $y = x^2 + x + 1$ is _____

(v) The distance covered by a particle moving along a curve $y = \frac{2}{3}x^{\frac{3}{2}}$

from the point (0,0) to the point $\left(4,\frac{16}{3}\right)$ is _____ (vi) The partial derivative of the function $f(x,y) = e^{1-x\cos y} + 5e^{\left(\frac{-1}{1+y^2}\right)}$ with respect to x at the point (1,0) is _____

(vii)
$$\int_0^\infty e^{-x} x^6 dx$$
 equals _____

- (i) The series $\sum_{n=1}^{\infty} \frac{1}{n}$ is convergent.
- (ii) The series $\sum_{n=1}^{\infty} r^n$ is convergent if r < 1.
- (iii) If $\sum x_n$ and $\sum y_n$ are two positive term series such that $\lim_{n \to \infty} \frac{x_n}{y_n} = a \ (\neq 0 \text{ and finite}), \text{ then both the series } \sum x_n \text{ and } \sum y_n \text{ are converge or diverge together.}$
- (iv) The value of $\lim_{n \to \infty} \left(1 + \frac{1}{\sqrt{n}} \right)^{\sqrt{n}}$ is *e*.
- (v) In a Fourier series of an odd function in the interval (-1, 1), where 1 is

1 x 7=7

1 x 5=5

any real number, the Fourier coefficient $b_n = 0$.

		any real number, the Fourier coefficient $b_n = 0$.	
	c)	(i) If $\emptyset = x^2 + y^2$, find curl(div \emptyset)	1
		(ii) Write the vector identity of $Curl(\vec{\varphi F})$	1
		(iii) What is the curl of the vector field $2x^2y\hat{i} + 5z^2\hat{j} - 4yz\hat{k}$	2
		(iv) Write the statement of Green's theorem	2
		(v) Find the value of $\oint_C (\cos(x)\sin(y) - y)dx + (\sin(x)\cos(y))dy$, where c is the unit circle.	2
2.	a)	Find y_n of (i) $y = \frac{x}{x-1}$ (ii) $y = e^x x^3$	2+3
	b)	If $y = \log(x + \sqrt{1 + x^2})$ then show that	5
		$(1+x^2)y_{n+2} + (2n+1)xy_{n+1} + n^2y_n = 0$	
	c)	Prove that the curves $\frac{x^2}{a} + \frac{y^2}{b} = 1$ and $\frac{x^2}{c} + \frac{y^2}{d} = 1$ will intersect	5
		orthogonally if $a + d = b + c$.	
	d)	(i) Calculate the arc length of the polar curve $\pi = 1 + \sin \theta$, $\theta = \pi$	5
		$r = 1 + \sin\theta; 0 \le \theta \le \frac{\pi}{2}.$	
		(ii) (ii) Find the radius of curvature of the parabola $y^2 = 16x$ at the end of its latus rectum.	
3.	a)	Use Euler's Theorem on homogeneous function to show that if	5
		$u = tan^{-1}\left(\frac{x^3 + y^3}{x - y}\right)$, then $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \sin 2u$.	
	b)	(i) Evaluate $\int_0^{\pi/2} \cos^8 \theta d\theta$	2+3
		(ii) If $ax^2 + 2hxy + by^2 = 1$, show that $\frac{d^2y}{dx^2} = \frac{h^2 - ab}{(hx + by)^3}$	
	c)	Prove by Taylor's Theorem that	5
		$\tan\left(\frac{\pi}{4} + x\right) = 1 + 2x + 2x^2 + \frac{8}{3}x^3 + \frac{10}{3}x^4 + \cdots$	
	d)	Show that $\beta(m, n) = \int_0^\infty \frac{x^{m-1}}{(1+x)^{m+n}} dx$	5
4.	a)	Write the statement of the following:	1+2+2
		(i) P-test	
		(ii) Cauchy's Root test	
		(iii) Fourier series	
	b)	Show that the series $\frac{1}{3} + \left(\frac{2}{5}\right)^2 + \left(\frac{3}{7}\right)^3 + \cdots$ is convergent	5

	c)	Expand $f(x) = x$ as a Fourier series in $0 < x < 2$.	5
	d)	Examine the convergency of the series $\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \cdots \dots$	5
5.	a)	Find the Fourier series for the function $\begin{cases} x & for - \pi < x < 0 \\ -x & for 0 < x < \pi \end{cases}$	10
	b)	Test the series $\sum_{n=1}^{\infty} \left(\frac{n^{n^2}}{n+1} \right)^{n^2}$	5
	c)	Expand $f(x) = 2x - 1$ as a half-range Fourier cosine series in $0 < x < 1$.	5
6.	a)	If $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ and \vec{a} is a constant vector, show that $curl(\vec{a} \times \vec{r}) = 2\vec{a}$	4
	b)	If $\vec{V} = (x^2 - y^2 + 2xz)\hat{\imath} + (xz - xy - yz)\hat{\jmath} + (z^2 + x^2)\hat{k}$ is a vector field, find	6
		$\operatorname{curl}(\vec{V})$. Show that the vectors given by $\operatorname{curl}(\vec{V})$ at $P_0(1,2,-3)$ and	
		$P_1(2,3,-2)$ are orthogonal.	
	c)	Verify Green's Lemma for $\oint_C (3x^2 - 8y^2)dx + (4y - 6xy)dy$, where C is	10
		the boundary of the area enclosed by the curves $y = \sqrt{x}$ and $y = x^2$	
7.	a)	Find $\iint_{S} \vec{F} \cdot d\vec{S}$, where $\vec{F} = (2x + 3z)\hat{\imath} - (xz + y)\hat{\jmath} + (y^2 + 2z)\hat{k}$ and s is the	10
		surface of the sphere having center at $(3, -1, 2)$ and radius 3.	
	b)	Use the Gauss divergence theorem to evaluate $\iint_{S} (\vec{F} \cdot \hat{n}) dS$, where	10
		$\vec{F} = x^2 z \hat{\imath} + y \hat{\jmath} - x z^2 \hat{k}$ and S is the boundary of the region bounded by the	
		paraboloid $z = x^2 + y^2$ and the plane $z = 4y$	
