Total No. of printed pages = 5

19/4th Sem/UMA 401

RALLIA

2022

NUMERICAL METHODS AND COMPUTER PROGRAMMING

Full Marks - 100

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1. (a) Show that $\Delta = E - 1$.

2

2

(b) Find the missing terms in the following data :

x :	1	1.5	2	2.5	
y :	6	?	10	20	

(c) Find the value of ∇²(4) from the following data:

x :	0	1	2	3	4	5
y :	4	8	15	7	6	2

[Turn over

- (e) Given that $\frac{dy}{dx} = x + x^2y$, with y(0) = 1 taking
 - h = 0.1, find out if there is any improvement in the value of y for x = 0.1 obtained by Runge Kutta Fourth Order Method from that of Runge Kutta Third Order. 5
- (f) In Regula-Falsi method, x_1 and x_2 are three two initial guess values and x_3 is the 3rd approximation to the root. Then the 4th approximation to the root is given by : 2

 $x_4 = \frac{x_2 f(x_3) - x_3 f(x_2)}{f(x_3) - f(x_2)}$. State True or False

with justification.

FAL LIB

- (g) Show how the Secant Formula is obtained from the Newton-Raphson Formula for approximating the root of a transcendental equation. 2
- (h) Write the condition for convergence of the Method of Successive Approximations. When does the Newton-Raphson method fail? 2

67/19/4th Sem/UMA 401 (2)

2. (a) Using Newton's forward interpolation find the value of f(4) for the following data:

x :	4	6	8	10
f(x) :	1	3	8	16

 (b) Using Newton's Backward interpolation formula, find the value of f(10) for the following data:

x :	3	4	5	6	7	8.	9
у:	4.8	8.4	14.5	23.6	36.2	52.8	73.9

- (c) Using Newton-Cote formula derive the Trapezoidal rule. 8
- 3. (a) Apply Lagrange's method to find the polynomial f(x) for the given data and the second second

x :	5	6	9	11	
f(x):	12	13	14	16	

Hence evaluate f(3).

(b) Find y'(0) and y''(0) from the following table :

(3)

x :	0	1	2	3	4	5
y:	4	8	15	7	6	2

67/19/4th Sem/UMA 401

[Turn over

6

6

- (c) Use Simpson's 1/3rd and 3/8th rule to evaluate $\int_{0}^{96} xe^{x^2} dx$ and compare the results 6 with actual value.
- (a) Using Modified Euler method, find y at 4. x = 0.2 x = 0.4 and given that $\frac{dy}{dx} = y - x^2$, y(0) = 1 with correct result upto four places 4+4=8 of decimals.
 - (b) Using Runge-Kutta method of Fourth order, solve $\frac{dy}{dx} = 3x + \frac{1}{2}y$ with y(0) = 1 at x = 0.1, 0.2, 0.3. 12

(a) Using Euler's method, find a solution of 5.

> $\frac{dy}{dx} = x^2 + y$, with initial condition y = 1 at x = 0 for the range $0 \le x \le 0.8$ in steps of 0.2. Compare the result with analytical solution. 8+4=12

DF TECH (b) Solve $\frac{dy}{dx} = 1 + xy^2$ with y(0) = 1 for x = 0.4and x = 0.5 by Milne's method given that y(0.1) = 1.105, y(0.2) = 1.223, y(0.3) = 1.355. 8

67/19/4th Sem/UMA 401 (4) 300

6. (a) Find a real root of $x^3 + 4x + 1 = 0$ correct to three places of decimal using the Bisection Method. (b) Find a real root of $x^3 + 2x - 1 = 0$ correct to three places of decimal using the Successive Approximation Method. (c) Find a real root of $e^{-x} - x = 0$ correct to three places of decimal using the Secant Method. 6 (a) Solve the following system of equations 7. using Gauss Elimination Method : $2x_1 + 6x_2 - x_3 = 23, 4x_1 - x_2 + 3x_3 = 9,$ $3x_1 + x_2 + 2x_3 = 13.$ (b) Solve the following system of equations using Gauss-Siedal Method : 8 $9x_1 + 2x_2 + 4x_3 = 20, x_1 + 10x_2 + 4x_3 = 6,$ $2x_1 - 4x_2 + 10x_3 = -15.$ (c) Find a real root of $e^{-x} - 2x + 1 = 0$ correct to three places of decimal using the Newton Raphson Method. 5 TRAL 67/19/4th Sem/UMA 401 300 (5)