Total number of printed page = 5

19/2nd Sem/UMA 201

2022

ENGINEERING MATHEMATICS - II

Full Marks - 100

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1. (a) Solve the following simultaneous linear equations by Gauss's Elimination method :

$$x - y - z = 2$$

$$3x - 3y + 2z = 16$$

$$2x - y + z = 9$$

(b) Reduce the following matrix to row echelon form 6

	1	2	-4	-4	5	1
A=	2	4	0	0	2	
	2	3	2	1	5	10.00
	-1	1	3	6	5	

[Turn over

5

- (c) Show that any square matrix can be expressible uniquely as the sum of a symmetric and a skew-symmetric matrix. 4
- (d) Find the inverse of the following matrix by using row elementary transformation: 5

$$\mathbf{X} = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 2 & 4 \\ 1 & -3 & -3 \end{bmatrix}$$

2. (a) Consider the three vectors S +{[1, 2, 0], [1, 1, -1], [1, 4, 2]}. Examine whether the set S, of vectors is linearly dependent or not.

(b) Find the eigenvalues of the matrix : 5

$$\mathbf{X} = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 5 & -2 \\ 1 & 1 & 2 \end{bmatrix}$$

(c) Verify the Cayley-Hamilton Theorem for the following matrix and find inverse. 5

(d) Let
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.
Is $D = \begin{bmatrix} 1 & 4 \\ 2 & 1 \end{bmatrix}$ a linear combination of A, B
and C?

- 3. Form differential equations from the following : $5 \times 2 = 10$
 - (i) $(A + Bx)e^{5x}$, where A and B are abritrary constants.
 - (ii) (Acosx + Bsinx)e^x, where A and B are arbitrary constants.
 - (b) Solve : $5 \times 2 = 10$

(i)
$$(x^2 + y^2)dx + 2xydy = 0.$$

(ii)
$$(x^2 - 4xy - 2y^2)dx + (y^2 - 4xy - 2x^2)dy = 0$$
.

- 5. (a) If P(A) = a and P(B) = b, then show that $P(A/B) \ge (a+b-1)/b$. 3
 - (b) State Baye's theorem. The chances that doctor C will diagnose disease X correctly is 60 %. The chances that a patient will die by his treatment after a correct diagnosis is 40 % and the chances of death by the wrong diagnosis is 70 %. A patient of doctor C, who had disease X died. Find the probability that his disease was diagnosed correctly. 2+5=7
 - (c) Find mean and variance of Binomial distribution.4+6=10

59/19/2nd/UMA 201

(4)

350

6. (a) Define:

$$1+2+2=5$$

7

- (i) Distribution function
 - (ii) Mathematical Expectation
 - (iii) Moments.
- (b) If X is a random variable with probability density function $f(x) = Ce^{-ax}$ where $0 < x < \alpha$, find C, E(X) and V(X). 2+3+3=8
- (c) The function is given as follows:

$$f(x) = \begin{cases} x \text{ for } 0 < x \le 1 \\ \frac{3-x}{4} \text{ for } 1 < x \le 3 \\ 0, \text{ otherwise} \end{cases}$$

Find the distribution function.

59/19/2nd/UMA 201 (5)

350