2025

Process Control and Instrumentation

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1.	a)	What are performance characteristics of an instrument, explain any four with	10
		example?	
	b)	Derive the transfer function $(Q_o(s)/Q_i(s))$ of the liquid level system shown below? q_i q_i q_i q_o $Tank 2$ q_o $Tank 3$ Figure 01	10
2	a)	Obtain the overall gain of the system whose signal flow graph is shown in fig.2. using mason's gain formula. $R(s) \qquad G_1 \qquad G_2 \qquad G_3 \qquad G_4 \qquad G_5 \qquad C(s)$ $Figure 2$	10
	b)	How are second-order systems classified based on the value of the damping ratio? Also, comment on the location of their roots in the s-plane.	4+6
3	a)	The measurements conducted on servo mechanism shows the system response to be	10

		$c(t) = 1 + 0.4e^{-50t} - 1.5e^{-10t},$	
		When subjected to a unit step input. Obtain the expression for the closed loop	
		transfer function.	
	b)	A unity feedback system has a forward path transfer function,	10
		$G(s) = \frac{9}{s(s+1)}$	
		Find the value of damping ratio, underdamped natural frequency of the system,	
		percentage overshoot, peak time and settling time.	
4		Consider the closed loop system given by	10
		$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$ Determine the value of 5 and ω_n so that the system region do to a stan input with	
		Determine the value of ξ and ω_n so that the system responds to a step input with	
		approximately 5% peak overshoot and with a settling time of 2 sec (use the 2%	
	b)	criterion)	10
	b)	For the system, $G(s)H(s) = \frac{K}{s^2(s+2)(s+3)}$	10
		Find the value of K to the limit the steady state error to 10 when the input to the	
		system is	
		$r(t) = 1 + 10t + 20t^2$	
5	a)	The figure shows PD controller used for the system. Determine the value of T _d	10
		so that the system will be critically damped. Calculate its settling time.	
		$R(s) \xrightarrow{+} 1 \xrightarrow{+} S(s+1.6)$ ST_d	
		Figure 03	
	b)	Find the step, ramp and parabolic error coefficients and their corresponding	10
		steady state error for unity feedback system having the transfer function,	
		$G(s) = \frac{14(s+3)}{s(s+5)(s^2+3s+2)}$	
6.	a)	What are the types of control valves? Explain the inherent characteristics of	4+6
		fluid control valves?	

	b)	Write short note on I/P converter and pneumatic actuator?	5+5
7.	a)	The characteristic equation of a system is given below. Determine the stability of the system.	10
		$1+G(s)H(s) = s^4 + 2s^3 + 3s^2 + 4s + 5 = 0$	
	b)	Explain the laws, principle & construction of thermocouple?	10
8.	a)	Distinguish between Resistance Temperature Detector and Thermistor? List its	10
		advantages, disadvantages & applications?	
	b)	P&ID diagram: Identify the process and P&ID representations for the below	10
		fig.2? Explain the control scheme?	
		Central Institut Bodoland Feed Condensate Figure 04	

