Total number of printed pages: 3 Programme (UG)/6th Semester/Paper Code UIE603

2023

UIE603: Optical Fiber and Optoelectronics

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1.	a) I	Match the Column A with Column B	5				
			umn B				
		i) Bragg wavelength is dependent on a) a few hundreds of micro	meters				
		ii) FBGs have the spatial period of the modulation b) about 10	meters				
		iii) LPGs have spatial periods of c) grating period and effective refractive index modulation of	ractive index				
		iv) Doppler anemometers, noncontact vibration measurement, and pressure sensors d) about half a micr	ometer				
		v) LiFi Coverage distance e) extrinsic s	sensors				
		ESTD.: 2006					
	b)	Fill in the blanks with the correct answer:	5				
		i) The loss of optical power as light travels along a fiber is called(dispersion/scattering/attenuation/absorption)					
		ii) The most common two types of optical detectors are (LE and APDs/PIN diodes and APDs/APDs and laser diodes/Laser diodes and diodes)	EDs d PIN				
		iii) System performance is affected most by of the fiber proper (Core diameter and cladding/ Attenuation and dispersion/ Core diameter and NA and delta)					
		iv) The speed of light in the fiber iscompared to the speed light in the air. (slower/same/faster)	of				
		v) The refractive index varyin Graded Index fiber. (Tangentiall Radially/ Longitudinally/ Transversely)	y/				

	c)	Mention any five advantages of fiber optic sensors.	5
	d)	A step index fiber in air has a numerical aperture of 0.16, a core refractive index of 1.45 and a core diameter of 60 μ m. Determine the normalized frequency for the fiber when light at a wavelength of 0.9 μ m is transmitted. Further, estimate the number of guided modes propagating in the fiber.	5
2.	a)	Outline the benefits and drawbacks of laser surgery.	5
	b)	List a variety LIDAR applications.	5
	c)	How can fluid velocity be measured using a LASER Doppler Velocimetry (LDV)? Explain.	6
	d)	Compare the differences between LIDAR and RADAR.	4
3.	a)	Evaluate the distinctions between photography and holography.	5
	b)	Transmission holograms and reflection holograms; describe the distinctions that exist between them.	6
	c)	What exactly are surface plasmons (SP)? Describe a typical Surface Plasmon Resonance (SPR) sensor arrangement using fiber optics.	7
	d)	What distinguishes a PIN from an APD?	2
4.	a)	List the analytes that can be measured using evanescent field absorption sensors.	4
	b)	An FBG sensor reflects signals with a wavelength of 1562 nm. If the core of the fiber has a mean value index of refraction $n = 1.500$, what is the periodic spacing (Λ) of the spatial variation in the index of refraction of this FBG?	3
	c)	A fiber optic current sensor is having 30 turns of fiber wound around a current-carrying conductor, for a current of 10 A determine the angle of rotation of the plane of polarization. (Given the Verdet constant value (for silica) is 2.64×10 –4 degree/A.	4
	d)	Using a schematic illustration, explain how the Fibre Mach-Zehnder interferometer (MZI) enables fiber-optic sensing applications for measurements of temperature, stress, and strain.	9
5.	a)	In a multimode parabolic index fiber having a core radius of 50 μ m, and $\Delta = 0.2$. Now calculate the periodic spacing (Λ) required for maximum coupling in the fiber due to micro bending	3

	b)	When the mean optical power launched into an 8 km length of fiber is 120 μW , the mean optical power at the fiber output is 3 μW .	5			
		Determine:				
		(a) the overall signal attenuation or loss in decibels through the fiber assuming				
		there are no connectors or splices;				
		(b) The signal attenuation per kilometre for the fiber.				
	c)	A light source with a bandwidth of 100 GHz is injected into a 3-km fiber. If the pulse injected has a width of 20 ms and the bandwidth length product of the fiber is 100 kHz-km, what is the pulse width at the exit end of the fiber?	3			
	d)	What operational characteristics of optical sources would affect the dispersion	2			
	e)	loss in an optical fiber? List the terms that might be used to describe the noise and sensitivity of a detector.	5			
	f)	If you had to choose a detector for a computer network (short distance communications), which detector would you choose? Why?	2			
6.	a)	Explain why a 4-level laser is more efficient than a 3-level laser.	5			
	b)	A four port coupler has $60\mu w$ optical power launched into port-1. The measured output powers at ports 2, 3 and 4 are 0.004, 26.0 and 27.5 μw respectively. Determine the excess loss, the insertion losses between the input and output ports, the crosstalk and the split ration of the device.	4			
	c)	Reflection is categorized into three types: Fresnel, specular, and diffuse. Define each of them.	3			
	d)	Calculate the difference in time per meter between a long mode and a short mode in a fiber (10 m long) with a V number of 23 and a core index of 1.46.	3			
	e)	Make a comparison between Step Index and Graded Index Fibres	5			
7.	Wri	Write short notes on <i>any four</i> of the following				
	a)	FBG sensor				
	b)	LASER Distance Meter				
	c)	Reagent mediated fiber optic sensor				
	d)	Fiber optic rotation sensor/fiber optic gyroscope				
	e)	Micro-bend hydrocarbon sensor				