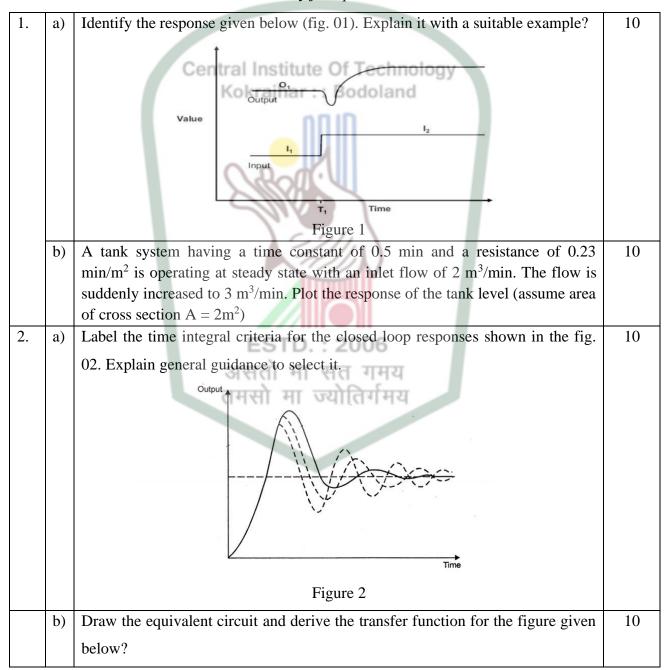
2025


Process Control

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

		$\begin{array}{c c} C_1 & & \\ \hline R_1 & & \\ \hline \end{array}$ $\begin{array}{c c} R_1 & & \\ \hline \end{array}$ $\begin{array}{c c} R_2 & & \\ \hline \end{array}$ $\begin{array}{c c} R_1 & & \\ \hline \end{array}$ $\begin{array}{c c} Differentiator \\ \text{with gain} & \\ \hline \end{array}$ $\begin{array}{c c} Sign \ changer \\ \end{array}$				
		Figure 3				
3	a)	A unity feedback control system with open loop gain of $G(s)$. Using derivative control that damping ratio is to made 0.8. Determine the value of T_d . Also determine the rise time, peak time & peak overshoot without and with derivative control. Hence the input to the system is unit step. $G(s) = \frac{4}{s^2 + 2s}$				
	b)		20 60 8	setpoint (error zero). When data is obtained (Table 1). 80 100 120 6 5 4	10	
4	a)	For a unity feedback system, process transfer function is given by $G_p(s) = \frac{8}{(3S+1)(4S+2)(5S+3)}.$ The controller is of PID mode. Calculate the optimal values of controller parameter based on ultimate cycle method of tuning.				
	b)	Draw a plot of the three-mode controller output for the errors shown below. $E_p = 2t\% \qquad (0\text{-}1\ sec})$ $E_p = 2\% \qquad (1\text{-}3\ sec})$ $E_p = -t/2 + 2.5\% \qquad (3\text{-}5\ sec})$ Assume $K_p = 5$, $K_i = 0.7\ / sec$, $K_d = 0.5\ sec$ and $P(0) = 20\%$.				
5.	a)	Compare Feed forward control (FFC) and Feedback control (FBC) as the				
		properties listed in the Table 2.				
		Property	FFC	FBC		
		Design principle				
		Measured variable				
		Controller system configuration Action				
		Typical controller				

	b)	The transfer function for a cascade system is given as:			
		$G_{p1} = \frac{2}{(3s+1)(2s+1)}$ $G_{p2} = \frac{4}{s+1}$ $G_{l2} = \frac{1}{(2s+1)}$			
		$G_{c2} = 5$ $G_{m1} = 0.05$ $G_{m2} = 0.2$			
		G _{c1} is a P controller			
		i) Calculate the ultimate value of K_{p1} for primary controller for which simple			
		feedback and cascade loop go into oscillations. ii) Compare the offset for			
		simple feedback and cascade loop when $K_{p1} = 12$			
6.	a)	Explain the working principle of I/P converter & air to open pneumatic actuator	5+5		
		with neat sketch?			
	b)	Write about inherent characteristics of control valves and valve sizing?	6+4		
7.	a)	List the silent features of override control to protect a boiler system with neat	10		
		sketch. Kokrajhar:: Bodoland			
	b)	Write short note on solid-solid mixing and gas station mixing control scheme.	5+5		

