Total number of printed pages: 99 B.Tech.(UG)/5th/UIE511 2022

Digital Signal Processing

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer **any five** questions.

1	a	A discrete-time signal $x[n] = \{5, 2, 0, (5), -5, 3, 4\}$. Sketch and label each. $x(-n)$ $x\left(\frac{n}{2}\right)$	10
	b	Determine the power and RMS value of the following signals.	05
	c	$y(t) = 5\cos(50t + \pi/6);$ What is impulse response?	05
2	a	Compute the DFT of sequence $x(n) = [4, 4 + 3 * i, 2, -4]$	10
	b	Check for periodicity of $cos(0.01\pi n)$.	05
	c	What is aliasing?	05
3	a	A discrete time causal system has a transfer function	10
		$H(z) = \frac{(1-z^{-1})}{(1-z^{-1}-6z^{-2})}$	
		i) Determine the difference equation of the systemii) Show pole zero diagram	
		Find the impulse response	
	b	Write down the Classifications of Signal. With example.	05
	c	What are the advantages of digital filters over analog filters?	05
4	a	Draw the complete signal flow graph of 8 points DIF FFT algorithm.	10
	b	Write the 4th order difference equation.	05
	c	Compute the convolution of these pairs of signals $x[n] = \{1,1,2\}, \ h[n] = u[n]$	05
5	a	Find the inverse Z-transform of $X(z) = \frac{z(z^2 - 4z + 5)}{(z - 3)(z - 1)(z - 2)}$	10
		for ROC $2 < z < 3$	
	b	Draw the block diagram of linear convolution using DFT.	05
	c	Find out the circular convolution $y_C[n] = x[n](4)h[n]$, Where $x[n] = \{1, -2, 4, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2$	05
5	a	1.5}, h[n]={3, 0, -2, 5}. Write down the all the classification of systems with proper example and	10
		explain it.	

	b	What are the conditions for a system to be LTI systems. Explain.	05
	c	Find out $u(n-3) - u(n-5)$	05
7	a	i) Compute the convolution and correlation of this pair of signals $x[n] = \begin{cases} 1,0,2,3,6 \end{cases}, h[n] = \begin{cases} 1,0,4,3,5,1 \end{cases}$	10
	b	Find the fundamental period T of the following signal $x(t) = 4\cos(2.5\pi t)$	05
	c	A discrete-time signal $x[n] = \{5, 2, (5), -5, 3, 4\}$. Find $x(n-2)\delta(n-2)$	05
		THE END	X
		Mullogy Kokiia,	
		A discrete-time signal $x[n] = \{5, 2, (5), -5, 3, 4\}$. Find $x(n-2)\delta(n-2)$ THE END	
	C	entralling	