Total number of printed pages: 3

Programme(UG)/5th Semester/UIE502

2024

CONTROL SYSTEM

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

l.	a)	Write the definition of open loop control system and closed loop control	5
		system. How they differ from each other.	

I Institute Of Tech

b) What is transfer function? Obtain the transfer function of the following 2+3 system.

- c) Define analogous system with suitable examples. Obtain the analogous 2+4+4 electrical circuits based on
 - a) Force-current analogy b) Force-voltage analogy.

- 2. a) What are steady state errors and error constants? Discuss the effect of type 3+2 and order of a system to obtain those values.
 - b) Obtain the time response expression of a second order control system 5 subjected to unit step input.
 - c) Write short notes on: i) Standards test signals, ii) Transient response 5+5 specifications

3. a) The block diagram of a simple servomechanism is shown in the following figure. Determine the value of 'a' and 'b' to provide an overshoot of 16% with time constant of 0.1 sec for a unit step input. Find also the damping ratio when K = 40.

b) Simplify the block diagram shown in following figure and find the overall transfer function.

- c) What is meant by stability of a system? Explain the effect of position of the 10 roots of the characteristics equation in the S-plane and the stability of a system using graphical representation.
- 4. a) By means of the Routh criterion, determine the stability of the system 5 represented by the following characteristics equation.

$$s^6 + 3s^5 + 5s^4 + 9s^3 + 8s^2 + 6s + 4 = 0$$

b) What is Mason's gain formula? Determine the overall transfer function of 2+3 the following SFG using Mason's gain formula.

c) The open-loop transfer function of a control system is given by:

$$G(s)H(s) = \frac{K}{s(s+6)(s^2+4s+13)}$$

Sketch the root locus and determine the stability condition.

5

10

	$G(s)H(s) = \frac{1}{s(s+2)(s+100)}$. Obtain gain and phase cross over	
b)	Frequency from the plot. Also comment on the system stability. What is a lead compensator? Determine the transfer function of a lead compensator that will provide phase lead of 45° and gain equal to 10dB at the angular frequency ω =8 rad/sec.	2+4
6. a)	Consider an open loop unstable system with the transfer function $G(s)H(s) = \frac{(s+2)}{(s+1)(s-1)}$. Determine system stability when the feedback	10
b)	path is closed using Nyquist stability criterion. Determine the transfer function of the state model. $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ -4 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t) \text{ and } y(t) = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$	5
c)	Determine the state model for the electrical circuit shown below. $ \begin{array}{c} $	5
7. a)	Check the observability of the system. $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u \text{ and } y = \begin{bmatrix} 20 & 9 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$	5
b)	 Write short notes (any three) i) Lag compensation technique ii) Controllability of a system iii) Properties of the nonlinear elements 	5 × 3

iv) Describing function of saturation nonlinearity