Total number of printed pages: 3

Programme(UG)/5th Semester/UIE502

2024

CONTROL SYSTEM

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1.	a)	Writ	te the definitions of the following with suitable examples.	2×3
		i)	Physical system	
		ii)	Open loop system	
		iii)	Transfer Function	
	b)	Obta rotat	ain analogous relationships between mechanical (translational + ional) and electrical system.	6
	c)	Obta	in the analogous electrical circuits based on	4+4
		a) F	orce-current analogy b) Force-voltage analogy.	
			f → x(t)	

2.	a)	Define the three steady state error constants.	3
	b)	For a unity feedback system having open loop transfer function as	3+4
		G(s) = K(s+2)/s2 (s2 + 7s+ 12), determine i) Error constants, ii) Steady state error for parabolic input.	
	c)	Obtain the time response expression of a second order control system subjected to unit step input.	10

- a) Write reduction rules to simplify a complex block diagram using block diagram algebra.
 - b) Simplify the block diagram and find the overall transfer function.

3.

c) The block diagram of a simple servomechanism is shown in the following figure. Determine the value of 'a' and 'b' to provide an overshoot of 16% with time constant of 0.1 sec for a unit step input. Find also the damping ratio when K = 40.

a) Define the Routh stability criterion. Using the Routh's stability criterion, calculate the range of 'K' for which the following system become stable for unity feedback.

$$G(s) = \frac{K(s+13)}{s(s+3)(s+7)}$$

b) What is Mason's gain formula? Represent the following set of equations by 4+5 a signal flow graph and determine the overall transfer function using Mason's gain formula.

$$x = x_1 + \alpha_3 u$$
$$\dot{x}_1 = -\beta_1 x_1 + x_2 + \alpha_2 u$$
$$\dot{x}_2 = -\beta_2 x_1 + \alpha_1 u$$

- c) Explain the concept of stability of a control system.
- 5. a) Why root locus plot is necessary in control system? Discuss two basic conditions for plotting a root locus.

6

2+4

8

6

5

5

b) The open-loop transfer function of a control system is given by:

$$G(s)H(s) = \frac{K}{s(s+6)(s^2+4s+13)}$$

Sketch the root locus and determine the stability condition.

6. Write short notes on any four from the following topics. 5x4=20

15

- a) Steady state response specifications
- b) Lag-Lead compensator
- c) State model of linear system
- d) Observability of a system
- e) State transition matrix
- 7. a) Consider an open loop unstable system with the transfer function 10 $G(s)H(s) = \frac{(s+2)}{(s+1)(s-1)}$. Determine system stability when the feedback path is closed using Nyquist stability criterion.
 - b) Sketch the bode plot for the open loop transfer function, 10 $G(s)H(s) = \frac{2000}{s(s+2)(s+100)}$ Obtain gain and phase cross over

frequency from the plot. Also comment on the system stability.

- i) Phase cross over frequency
- ii) Gain cross over frequency
- iii) Gain margin
- iv) Phase margin