Total number of printed pages: 3 Programme(UG)/5th Semester/UIE502

2023

CONTROL SYSTEM

Full Marks: 100

Time: Three hours

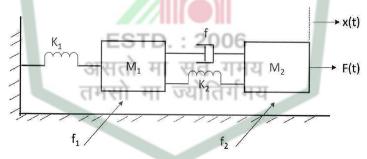
The figures in the margin indicate full marks for the questions.

Answer any five questions.

Central Institute Of Technology

1. a) Write the definitions of the following with suitable examples.

 2×3


- i) System
- ii) Controlled system
- iii) Transfer Function
- b) What is analogous system? Obtain analogous relationships among mechanical and electrical system.

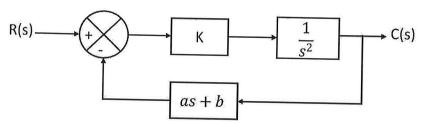
6

c) Obtain the analogous electrical circuits based on

4+4

a) Force-current analogy b) Force-voltage analogy.

2. a) Define the three steady state error for a control system.

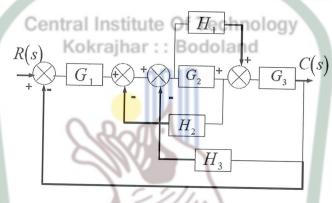

2

1+3+4

- b) For a unity feedback system having open loop transfer function as G(s) = K(s+2)/s2 (s2 + 7s+ 12), determine i) Type of the system, ii) Error constants, iii) Steady state error for parabolic input.
- c) Obtain the time response expression of a first order control system subjected to unit step and unit ramp input.

5+5

3. a) The block diagram of a simple servomechanism is shown in the following figure. Determine the value of 'a' and 'b' to provide an overshoot of 16% with time constant of 0.1 sec for a unit step input. Find also the damping ratio when K=40.


b) Write the rules for simplification of the block diagram algebra.

6

6

c) Simplify the block diagram and find the overall transfer function.

8

4. a) State the Routh stability criterion. Using the Routh's stability criterion, calculate the range of 'K' for which the following system become stable for unity feedback.

2+4

$$G(s) = \frac{K(s+13)}{s(s+3)(s+7)}$$

b) What is Mason's gain formula? Represent the following set of equations by a signal flow graph and determine the overall transfer function using Mason's gain formula.

4+5

$$x = x_1 + \alpha_3 u$$

$$\dot{x}_1 = -\beta_1 x_1 + x_2 + \alpha_2 u$$

$$\dot{x}_2 = -\beta_2 x_1 + \alpha_1 u$$

c) Explain the concept of stability of a control system.

5

5. a) Why root locus plot is necessary in control system? Discuss two basic conditions for plotting a root locus.

5

b) A unity feedback control system has an open-loop transfer function $G(s)H(s) = \frac{K(s+1)}{s^2 + 0.4s + 0.4}$. Sketch the root locus plot of the system.

Determine the value of K at s=-2. Comment on the stability and time response of the system.

6. Write short notes on any four from the following topics.

5x4 = 20

15

- a) Transient Response Specifications
- b) Lag compensator
- c) State model of linear system
- d) Observability of a system
- e) State transition matrix
- 7. a) Consider an open loop unstable system with the transfer function $G(s)H(s) = \frac{(s+2)}{(s+1)(s-1)}$. Determine system stability when the feedback path is closed using Nyquist stability criterion.
 - b) Sketch the asymptotic Bode plot for the following transfer function 10

$$G(s)H(s) = \frac{2(s+0.25)}{s^2(s+1)(s+0.5)}.$$

From the Bode plot determine

- i) Phase cross over frequency
- ii) Gain cross over frequency
- iii) Gain margin
- iv) Phase margin