Total number of printed pages: 4

Programme(UG)/5th Semester/UIE502

 \mathfrak{O}

2022

CONTROL SYSTEM

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions. 131

Answer any five questions.

1.	a)	How an open loop control system is different from a closed loop control	6
		system? Explain with the help of suitable example.	
	b)	Define transfer function and obtain the transfer function of the following	2+2 = 4
		system. $K \rightarrow F(t)$ $K \rightarrow F(t)$ $K \rightarrow F(t)$ $K \rightarrow F(t)$ $K \rightarrow F(t)$	
	c)	Write the differential equations governing the behaviour of the mechanical system as shown in following mechanical arrangements. Also obtain the analogous electrical circuits based on i) Force-current analogy and ii) Force-voltage analogy. Force-voltage analogy. f_1 f_1 f_2 f_2 f_1 f_2 f_2 f_1 f_2 f_2 f_3 f_2 f_3 f	10
2.	a)	Determine the state model for the electrical circuit shown below.	5

		L1 L1	
		$R1 \neq C \qquad R1 \qquad $	
	b)	Draw the state block diagram and model for the transfer function $G(s) = \frac{1}{(s+1)(s+3)}.$	5
	c)	Determine the time response using the Laplace Transform method for the state model assuming all initial conditions to be zero. $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ -4 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t) \text{ and } y(t) = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$	10
3.	a)	What happens if a takeoff point has been moved before a block, describe with suitable example. Determine the overall transfer function of the following block diagram using block diagram algebra. $\begin{array}{c} \hline H_1 \\ \hline \\ $	2+8=10
	b)	Represent the following set of equations by a signal flow graph and determine the overall transfer function using Mason's gain formula. $x = x_1 + \alpha_3 u$ $\dot{x}_1 = -\beta_1 x_1 + x_2 + \alpha_2 u$ $\dot{x}_2 = -\beta_2 x_1 + \alpha_1 u$	5
	c)	Obtain the time response expression of a second order control system subjected to unit step input.	5

4.	a)	The block diagram of a simple servomechanism is shown in following figure. Determine the value of 'a' and 'b' to provide an overshoot of 16% with time constant of 0.1 sec for a unit step input. Find also the damping ratio when K = 40. $R(s) \longrightarrow K \longrightarrow C(s)$ $as + b$	5
	b)	A second order control system is represented by a transfer function given below: $\frac{\theta_0(s)}{T(s)} = \frac{1}{Js^2 + fs + K}$ Where θ_0 is the proportional output and <i>T</i> is the input torque.	6
		A step input 10 Nm is applied to the system and test results are given below: (a) $M_p = 6\%$, (b) $t_p = 1$ sec and (c) the steady state value of the output is 0.5 radian. Determine the values of <i>J</i> , <i>f</i> and <i>K</i> .	
	c)	What are steady state errors and error constants? Discuss the effect of type and order of a system to obtain those values.	4
	d)	By means of the Routh criterion, determine the stability of the system represented by the following characteristics equation. $s^{6}+3s^{5}+5s^{4}+9s^{3}+8s^{2}+6s+4=0$	5
5.	a)	The open-loop transfer function of a control system is given by: $G(s)H(s) = \frac{K}{s(s+6)(s^2+4s+13)}$ Sketch the root locus and determine the stability condition.	14
	b)	From the above root locus determine the centroid, angle of departure, break away point, value of <i>K</i> and the frequency at which the root loci cross the j ω axis.	6
6.	Wr	ite short notes on any two of the following (any four)	5×4=20
	a)	Lag-Lead compensator	

	b)	Nyquist stability criterion	
	c)	Describing function	
	d)	Controllability	
	e)	Saturation Nonlinearity	
7.	a)	Sketch the bode plot for the open loop transfer function, $G(s)H(s) = \frac{2000}{s(s+2)(s+100)}$ Obtain gain and phase cross over frequency from the plot. Also comment on the system stability.	15
	b)	Determine the transfer function of a lead compensator that will provide phase lead of 45° and gain equal to 10dB at the angular frequency $\omega=8$ rad/sec.	5