2023

ANALOG INTEGRATED CIRCUITS

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

		Central Institute Of Technology	
1.	a)	Calculate the single-ended output voltage Vol and Common mode	6
		gain for the circuit of Fig.1.	
		$\begin{array}{c c} & +9V \\ & 47K\Omega & R_{C} & 47K\Omega & r_{i1}=r_{i2}=20K\Omega \\ & & \beta_{1}=\beta_{2}=75 \end{array}$ $\begin{array}{c c} & V_{o} & $	
	b)	Draw the AC and ideal equivalent circuit of an OpAmp as a constant gain multiplier. Also derive the expression for gain.	4+6=10
	c)	Determine the output of an inverting amplifier and a non-inverting amplifier if R_1 =100K Ω , R_f =500 K Ω , and V_1 =2V.	4
2.	a)	Calculate the output voltage of an op-amp summing amplifier for the following sets of voltages and resistors. Use $R_f=1$ M in all cases. a. $V_1=+1$ V, $V_2=+2$ V, $V_3=+3$ V, $R_1=500$ k, $R_2=1$ M, $R_3=1$ M. b. $V_1=-2$ V, $V_2=+3$ V, $V_3=+1$ V, $V_1=200$ k, $V_2=1$ M	5
	b)	An OpAmp has a finite open loop gain of 100. Its input offset voltage $V_{ios}(=+5 \text{mV})$ is modeled as shown in Fig. 2. The amplifier is ideal in all other respects. V_{input} is 25mV. Determine the output voltage.	5

		15kΩ A _g =100 V _{los} 5mV Central Institute Of Technology KokrajhaFig. 2 Bodoland	
	c)	Derive expressions for output voltage of an integrator and a differentiator using OpAmp.	10
3.	a)	Derive the expression for output voltage of an OpAmp in terms of A_d , V_d , V_c and CMRR.	10
N ,	b)	Determine the output voltage of an op-amp for input voltages of $V_{i1} = 150 \text{ mV}$ and $V_{i2} = 140 \text{ mV}$. The amplifier has a differential gain of $A_d = 4000$ and the value of CMRR is: i. 100. ii. 10^5 .	5
	c)	In the circuit of Fig. 3 assume that the OpAmp is ideal. If the gain V_0/V_{in} is -12 determine the value of R in $k\Omega$.	5
	,	Fig. 3	
4.	a)	Derive the output of log and antilog amplifier.	10
	b)	For the OpAmp circuit shown the output saturation voltage is ± 15 V. Determine the upper and lower threshold voltages of the circuit.	6

e.		V_{in} O V_{out}	
		$5 k\Omega$ $3V$	
		Central Instit ^{Fig. 4} Of Technology	
	c)	What is precision rectifier? Explain.	4
5.	a)	What are the different types of controlled sources using OpAmp. Explain each type.	10
	b)	Explain the working of an astable multivibrator using NE555 timer.	5
	c)	How triangular wave can be generated? Explain.	5
6.	Writ	e short notes on any two of the following	10x2=20
	a)	Wein Bridge oscillator	
	b)	Instrumentation Amplifier	
	c)	Schmitt Trigger	

ESTD.: 2006 असतो मा सत गमय तमसो मा ज्योतिर्गमय