2023

NETWORK THEORY

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1. a) Define the following:

4

6

10

- (i) Active element (ii) Bilateral element (iii) Lumped network
- (iv) Continuous system
- b) For the circuit shown in the figure below find the current through 30Ω resistance using mesh analysis.

c) Find V_X using nodal analysis for the network shown below.

100 V 20 ohm 150 V 10 ohm 25 ohm V_x 10 A

[Turn Over]

b) Find current flowing through 1 Ω resistor by Thevenin's theorem in the circuit shown below.

7

c) Using Millman's theorem find I_L through R_L for the network shown below.

3

3. a) For the given circuit, determine the current flowing through 10 Ω resistor using Norton's theorem.

8

Find maximum power delivered to the load R in the given circuit. b)

State and explain reciprocity theorem. c)

4

8

4. Define following terms: a)

b)

b)

3

(i) Resonance (ii) Bandwidth (iii) Half power frequency ntral Institute Of Technolog

- 8
- Show that resonant frequency of series resonance circuit is equal to the geometric mean of two half power frequencies. A series RLC circuit consist of a resistance of 1 $k\Omega$ and an inductance of c)

6

- 100 mH in series with capacitance of 10 pF. If 100 V is applied as input across the combination determine (i) Resonant frequency (ii) Maximum current in the circuit (iii) Q-factor of the circuit (iv) Half power frequencies.
- Draw the resonance curve of the series RLC circuit. d)

3

5. Define the following terms: a)

4

(i) Oriented graph (ii) Non-planner graph (iii) Twig (iv) Subgraph

5

c) What are the properties of a tree in graph theory?

5

d) Construct dual network of the circuit shown below.

6

a) Define initial and final value theorems.
b) In the network shown below the switch K is moved from position 'a' to 'b' at t=0 (a steady state existing in position 'a' before t=0). Solve for the current i(t), using Laplace Transformation.

- c) Find the transient response of a driven series R-L circuit.
- 7 a) Define T parameters.

ESTD.: 2006

- b) Express Y parameters in terms of Z parameters. 7
- c) A two port network has the following Z-Parameters: $Z_{11}=10 \Omega$, $Z_{22}=12 \Omega$, $Z_{12}=Z_{21}=5 \Omega$. Compute the Y-parameters for the same network.
- d) Establish a relationship between line and phase voltages and currents in a star connection.
