2021

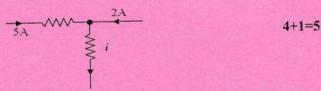
BASIC ELECTRICAL ENGINEERING

Full Marks: 100

Time: Three hours

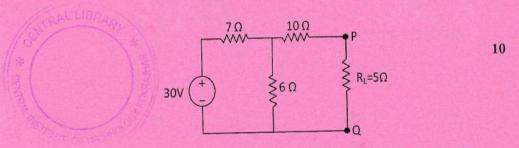
The figures in the margin indicate full marks for the questions.

Answer any five questions.


1.	a)	Write the SI	units of the	following q	uantities
----	----	--------------	--------------	-------------	-----------

	(i) Magnetomotive force (ii) Current density (iii) Permeance (iv) Reluctance	1×5=5		
b)	(v) Resistivity Write five similarities between electric circuit and magnetic circuits.	5		
c)	An iron ring has a mean diameter of 15 cm, a cross-section of 20 cm ² and an air-gap of 0.5 mm cut in it. It is uniformly wound with 1500 turns of insulated wire and a magnetizing current of 1A produces a flux of 1 mWb. Neglecting the effect of magnetic leakage calculate			
	(i) reluctance of the magnetic circuit(ii) relative permeability of iron.			
a)	Write the Faraday's laws of electromagnetic induction.	5		
b)	What are the main parts of a DC generator?	5		
c)	An ideal 50 kVA transformer has 500 turns on the primary winding	10		

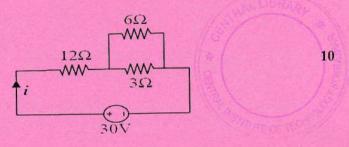
and 40 turns on the secondary winding. The primary is connected to 3000V, 50Hz supply. Calculate --


- (i) primary and secondary currents on full-load
- (ii) secondary emf
- (iii) the maximum core flux
- 3. a) State Kirchhoff's current law and Kirchhoff's voltage law.

Find the current 'i' in the given network.

5

- b) State the maximum power transfer theorem. Prove the condition for maximum power transfer to a load resistance of a network.
- c) For the given network, calculate the current through R_L using Thevenin's equivalent circuit. Also verify your result using Norton's equivalent circuit.

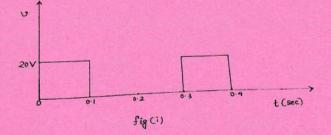


4. a) Write the statement of Ohm's law. Is there any relation between temperature and resistance of a material?

b) Three resistors 3Ω , 6Ω and 9Ω are connected in star configuration. Find the equivalent delta for this star network.

5

c) In the given circuit, estimate power loss in the 6Ω resistor. Also find the total power supplied and total power consumption.


5. a) Draw the following vectors and represent them in the polar form

(i)
$$A = -5 + j5$$

(ii) $B = -8 - j6$

5

b) Compute the Average and RMS values of the square voltage wave shown below –

2

c) A resistance of 20Ω , an inductance of 0.2H and a capacitance of $2\times5=10$

 $100\mu F$ are connected in series across 220V, 50 Hz mains. Determine the following --

- (i) impedance
- (ii) current
- (iii) Voltage across R, L and C
- (iv) Power in watts
- (v) Power factor
- 6. a) What is meant by Phase sequence? Write some advantages of three phase system over single-phase system.

5

b) Derive the relationship between the phase current and line current in three phase delta connected system.

5

c) A balanced star-connected load of (8+j6) ohm per phase is connected to a balanced 3-phase 400V supply. Find the line current, power factor, active power and apparent power.

10

- 7. a) A moving coil instrument has a resistance of 10Ω and gives full scale deflection when carrying a current of 50mA. How will you use this instrument to measure current of magnitude 100A and 5+5=10 voltage of magnitude 750V? Draw necessary diagrams.
 - b) Two impedances are $Z_1 = (8 + j6)$ ohm and $Z_2 = (3 j4)$ ohm are connected in parallel. If the total current of the combination is 25A, find the current taken and power consumed by each impedance.

10

