2024

ANALOG IC DESIGN

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1. a) Discuss in detail each circuit element in the small signal model of a MOSFET and explain how the value of each parameter in it is calculated.

b) For the circuit given below, write the expression for I_X and 5+5 transconductance and plot them as V_X is varied from 0 to 3V.

- a) A diode connected MOSFET act as a two terminal device. Determine its resistance using small equivalent model. Discuss how this resistance differs between NMOS and PMOS when used as a load resistance in a CS stage with NMOS input transistor.
 - b) Evaluate the expression for circuit transconductance and voltage gain for a CS amplifier with degenerating resistance R_S and load resistance R_D .
 - c) For the source follower circuit below, (W/L)1=20/0.5, $I_1=200\mu A$, $V_{t0}=0.5V$, $2\varphi_F=0.7V$, $V_{DD}=1.2V$, $\mu_n C_{ox}=50\mu A/V^2$, and $\gamma=0.4V^{-1/2}$. Calculate the value of Vout when Vin=1.2V. If I_1 is implemented using a single NMOS transistor, determine its minimum sizing so that it is saturated for the same input voltage.

$$V_{\text{In}} \circ V_{DD}$$
 $V_{\text{In}} \circ V_{\text{out}}$

a) Draw the circuit diagram of a NMOS-PMOS folded cascode amplifier. 3+3 Show that its output resistance is relatively lower than that of an ordinary cascode amplifier. Discuss any one advantage of folded cascode

configuration.

Show that a fully differential amplifier with resistive load can be analyzed b) using superposition principle where the effect of differential inputs is 8 evaluated separately. Determine the small signal voltage gain of this circuit. c) Determine what happen to the expression for voltage gain of a fully differential amplifier with resistive load if one of the devices has a 6 transconductance twice that of the other. Compare the performance of a high swing cascode current mirror circuit 4 with that of an ordinary cascode current mirror circuit. 6 Draw the circuit of a 5-transistor OpAmp with PMOS input and single ended output. Derive its voltage gain and maximum output voltage swing. 8 c) Discuss the negative effect of introducing unity feedback in a telescopic OpAmp with single ended output. 6 a) Design a telescopic OpAmp with single ended output for a 180nm 5 technology node with voltage gain of 3000 and peak-to-peak output voltage 10 swing of 1.5V. Given VDD=3V, Maximum power budget=10mW, $\mu_n C_{ox} = 60 \mu \text{ A/V}^2$, $\mu_p C_{ox} = 30 \mu \text{ A//V}^2$, $V_{TN} = |V_{TP}| = 0.7 \text{V}$ and $\lambda_P = 0.7 \text{ A}$ Explain how the gain of a cascode amplifier can be boosted using a folded cascode auxiliary amplifier by evaluating the voltage gain of the resulting 6+4 circuit. Discuss this circuit's advantage over the circuit where a CS stage is used as an auxiliary amplifier. 6 What are the types of noise generated in a MOSFET operating in saturation mode? Give expression for each. Evaluate the value of mean-square value 4+6 of input referred noise voltage in a fully differential telescopic amplifier. Determine the contributions from each of the nine devices stating the proper reason involved. b) Show that an amplifier with forward path transfer function A(s) = $\frac{A_0}{(1+s/\omega_C)^3}$ and a resistive feedback path transfer function β is not stable if 4+6 $A_0\beta=100$ and $\omega_C=10$ MHz. Discuss with details a method to stabilize 7 a) Discuss how input referred noise is calculated in a multi-stage amplifier? b) Calculate the temperature sensitivity of a forward biased diode voltage 5 carrying a constant current of say $5\mu A$ through it. For the given current, 5 assume a diode voltage of 0.65V at a temperature of 300K. Draw the circuit diagram of a band gap reference circuit and explain how PTAT and CTAT voltages are generated and canceled. 10