Total number of printed pages: 2

1.

UG/8th/UECE812A

2023

INFORMATION THEORY AND CODING

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1	a	Define discrete memory less source (DMS). Show that the average 2+8
		information content of the DMS is given by: $H(s) = \sum_{i=1}^{M-1} n \times \log(1 + i)$
		moment of the Divis is given by: $H(s) = \sum_{i=0}^{n} p_i \times \log_2 \frac{p_i}{p_i}$, where
		' p_i ' is the probability of the occurrence of the symbol ' x_i ' in the symbol set
		X in a particular sampling instant ' T_s '.
	b	Show that the entropy of an extended DMS (S^n) is given by 5+5
		$H(S^n) = n \times H(S)$; where 'n' is the number of symbols in each block of
		the DMS with an alphabet size ' <i>M</i> '. A DMS ' <i>S</i> ' has an alphabet $\{S_0, S_1\}$
		with probability $p(S_0) = p_0 = \frac{1}{4}$ and $p(S_1) = p_1 = \frac{3}{4}$. Find the entropies
		of the source 'S' and the extended source ' S^3 '
2	9	A source produces three symbols 'A B and C' with the following marginal 4+6
2	a	and conditional probabilities:
		ESTD. : 2006
		i p(i) 314 cm $p(j i)$ cm A B C
		तमसो मा ज्योतिर्गमय
		A 1/4
		A 1/8 1/4 5/8
		B 1/2 1/8 3/8
		C 1/2
		C 3/8 5/8 0
		(i) Assume that there is no inter-symbol interference; calculate the entropy
		of the source.
		(ii) Calculate the conditional entropy $H(Y X)$.
1	b	What is a binary symmetric channel (BSC)? Find the channel matrix for a2+3+5
		BSC.

		x0 p(0) = 0.4 (1-p) = 0.8 y0	
5		p = 0.2	
		p=0.2	
		p(1) = 0.6	
		x_1 $(1-p) = 0.8$ y_1	
		The BSC shown above has an error probability of $p = 0.2$. The a-priori probabilities of a '0' and a '1' at the input are 0.4 and 0.6 respectively, shown above. What is the probability of receiving a '1' at the receiving end?	
	3 a	Show that the mutual information between the transmitted symbol ' x_i ' and $\begin{bmatrix} c & c \\ c & c $	4+4+2
		the received symbol ' y_i ' is given by $I(x_i y_j) = \log_2 \left \frac{p(x_i y_j)}{p(x_i)} \right $. Hence	
		show that the average mutual information of the channel is given by $I(X;Y) = H(X) - H(X Y)$. Represent this as a Venn diagram.	
-	b	State Shannon's channel coding theorem. Show that for a discrete memory-	2+7+1
		less source (DMS) with entropy of $(H(s))$ bits/sym and symbol rate of	
		$\begin{pmatrix} 1/T_s \end{pmatrix}$ sym/s, the condition for transmitting these symbols to the destination	
		with arbitrary small error probability (P_e) is $\frac{H(s)}{T_s} \leq \frac{C_s}{T_c}$, where the units in	
		both the sides are in bits/s and C_s is the channel capacity of the discrete	
		memory-less channel (DMC) with symbol rate $\begin{pmatrix} 1/T_c \end{pmatrix}$ sym/s. How this	
-	4 a	Prove that when the random variable X corresponds to a Gaussian	12
		distribution having mean 'a' and probability density function ($f_{a}(x) = \frac{1}{1 - (x-a)^{2}}$), the differential entropy will be given	
		$\int_{x} (x)^{2} \frac{1}{\sigma \times 2\pi} \left[\frac{1}{2\sigma^{2}} \right]^{2}$, the unrelevant entropy will be given	
		by $h(X) = \frac{1}{2} \log_2(2\pi e \sigma^2)$; where ' σ^2 ' is the variance of the Gaussian	
-	h	process.	0
	D	Snow that the differential entropy $h(X)$ of a continuous random variable (X) is a maximum when it has a Gaussian distribution with a maximum	ð
		value of $\frac{1}{2}\log_2(2\pi e\sigma^2)$.	
	5 a	Discuss Shannon's information capacity theorem. Hence prove that the	4+8
		channel capacity of a band-limited, power-limited Gaussian channel with input power ' S ' is given by	

		$C = B \times \log_2\left(1 + \frac{S}{N}\right)$ bits/s, where the symbols have their usual meaning.	
	b	An analog signal having 4 kHz bandwidth is sampled at 1.25 times the	2+2+2+2
		Nyquist rate and each sample is quantized into one of 256 equally likely	
		levels. Assume that the successive samples are statistically independent,	
		(a) What is the information rate of this source?	
		(b) Can the output of this source be transmitted without error over an	
		AWGN channel with a bandwidth of 10 kHz and an (S/N) ratio of 20 dB?	
		(c) Find the (S/N) ratio required for error-free communication for part (a).	
		(d) Find the bandwidth required for an AWGN channel for error-free	
		communication of the output of this source if the (S/N) ratio is 20 dB.	
6	a	What is an ideal system? Calculate the Shannon's limit for the ideal system.	1+4+7
		Hence, discuss 'power-limited' and 'band-limited' operation of a Gaussian	
		channel. Central Institute Of Technology	
	b	In a certain picture transmission, there are 2.2x10 ⁶ picture elements/frame.	8
		For good reproduction, 12 brightness levels are necessary. Assuming all the	
		levels are equally likely, calculate the channel bandwidth without coding to	
		transmit one picture frame every three minutes. Assume the (S/N) ratio over	
		the channel to be 30 dB.	

xxxxxxxx

ESTD. : 2006 असतो मा सत गमय तमसो मा ज्योतिर्गमय