Total number of printed pages: 2

UG/8th/UECE812A

2024

Information theory and Coding

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1.	a)	Define a discrete memory less source (DMS). What is meant by the entropy						
		of a DMS? Show that the average information content of the DMS is given						
		by: $H(S) = \sum_{i=0}^{M-1} p_i \times \log_2\left(\frac{1}{p_i}\right)$; where 'p_i' is the probability of the						
		occurrence of the RV ' x_i ' of a random process S.						
	b)	Consider the transformation of a RV 'Y' by assuming the RV 'X' has a pdf						
		$f_x(x) = e^{-x} \times u(x)$; where ' $u(x)$ ' is a unit step Heaviside function. If the						
		relation between the RVs 'Y' and 'X' is $Y = X^3$; show that the pdf of 'Y' is						
		given by $f_{Y}(y) = \frac{e^{-\sqrt[3]{y}}}{3} \times \sqrt[3]{\frac{1}{y^{2}}} \times u(y).$						
2.	a)	b) Prove that the pdf of the sum of two statistically independent RV	10					
-		(W = X + Y) is the convolution of their individual RVs.						
	b)	Show that the mutual information between the transmitted symbol ' x_i ' and						
		the received symbol ' y_j ' is given by $I(x_i y_j) = \log_2 \left[\frac{p(x_i y_j)}{p(x_i)} \right]$. Hence						
		show that the average mutual information of the channel is given by $I(X,Y) = H(X)$, $H(X Y)$, where the number I has the						
2		I(X, I) = H(X) - H(X I); where the symbols have their usual meaning.						
3.	a)	Show that the entropy of an extended DMS (S^n) is given by	5+5					
		$H(S^n) = n \times H(S)$; where 'n' is the number of symbols in each block of						
		the DMS with an alphabet size ' <i>M</i> '. A DMS has an alphabet $\{S_0, S_1\}$ with						
		marginal probabilities $p(S_0) = p_0 = \frac{1}{4}$ and $p(S_1) = p_1 = \frac{3}{4}$. Find the						
		entropies of the source 'S' and the extended source 'S''.						
	b)	A source produces three symbols 'A, B and C' with the following marginal						
		and conditional probabilities:	3+7					

	1									
		i p(i)	p(j i)	A	В	С				
		A 1/4	A	1/8	1/4	5/8				
		B 1/4	В	1/2	1/8	3/8				
		C 1/2	C	3/8	5/8	0				
		(i) Assume that there is no inte	er-symbol i	nterferer	L	late the entropy	v			
		of the source.								
		(ii) Calculate the conditional entropy $H(Y X)$								
4.	a)	a) Prove that when the random variable 'x' corresponds to a Gaussian distribution having mean 'a' and probability density function $1 \left[(x-a)^2 \right]$								
		$f_x(x) = \frac{1}{\sigma\sqrt{2\pi}} \times \exp\left[-\frac{\sqrt{2}}{2\sigma^2}\right]$ the differential entropy will be given by								
		$h(X) = \frac{1}{2}\log_2(2\pi e\sigma^2)$, where σ^2 is the variance of the Gaussian								
		process 'X'.								
	b)	Show that the differential entropy ' $h(X)$ ' of a continuous random variable								
		is a maximum when the probability density function of the random variable								
		is Gaussian, and the maximum value of the differential entropy is given by								
		$h(X) = \frac{1}{2}\log_2(2\pi e\sigma^2)'$, where	ere the sym	bols hav	e their us	ual meaning.				
5.	a)	Discuss Shannon's information	on capacity	y theore	m. Henc	e, prove that	the 4+10			
		channel capacity of a band-in		$\begin{pmatrix} 1 \\ 1 \\ S \end{pmatrix}$		stati channel w	/1111			
		input power 'S' is given by $C = B \times \log_2 \left(1 + \frac{z}{N}\right)$ bits/sec, and the symbols								
		have their usual meaning.	मां ज्योतिर्गम	ru –						
	b)	What is an ideal information s	ystem? Ca	lculate S	hannon's	limit for an id	ieal 6			
		system.								
6.	Wr	rite short notes on any two from the following:								
12	a)	Average mutual information is always positive $(I(X;Y) \ge 0)$								
	b)	Binary symmetric channel (BSC) and transitional probability.								
	c)	Channel capacity of a BSC: C_{1}	$_{S} _{BSC} = \left[1 - \right]$	H(p)	bits/sym.					
	d)	Optimum distribution of input power.								

XXXXXXXX