Total number of printed pages: UG/07/UECE714B

2022

Machine Learning

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer Q-1 any four questions from the rest.

1.	A)	Select the correct alternatives	1x10=10		
	a)	What is unsupervised learning	1		
		i) The features of a group are not explicitly started			
		ii) The number of a group may not be known			
		iii) Both i) and ii)			
		iv) None of the above			
	b)	If the output of a supervised model is a categorical output then it is a	1		
		i) Regression			
		ii) Classifier			
		iii) Prediction			
		iv) None of the above			
	c)	When we have two or more input variables and an output variable then the	1		
		cost function is represented by a			
		i) Convex curve			
	C	ii) Concave curve			
		iii) Contour plot			
		iv) None of the above			
	d)	Which of the following is a measure of the spread of data?			
		i) Mean			
		ii) Variance			
		iii) Covariance			

	iv) Median	
e)	Which of the following is a widely used and effective machine learning algorithm based on the idea of bagging?	
	i) Random forest	
	ii) Regression	
	iii) Stochastic regression	
	iv) K-means clustering	
f)	Which of the following is a widely used and effective machine learning algorithm based on the idea of bagging?	·
	i) Factor analysis ii) Decision trees are robust to outliers	
	iii) Decision trees are prone to be overfit iv) None of the above	
g)	Weighted sums in ANNs are referred to as?	
	I) Activation	
	ii) Support	
	iii) Link	
	iv) Output	
h)	Weighted sums in ANNs are referred to as?	2
	I) Recurrent Neural Networking	
	ii) Convolutional Neural Networking	
	iii) Auto encoder	
	iv) Deconvolutional Neural Network	
i)	Which of the following boolean operation can be represented by a single perceptron layer?	
	A) X1 AND X2	
	B) X1 OR X2	
	C) X1 NOR X2	
	D) X1 XOR X2	
	i) A only	
	ii) A, B only	
	iii) A, B, and C only	
	iv) Only D.	

	j)	The <i>sigmoid</i> function defined as,	
	J)	(i) $\frac{1}{exp(t)+exp(-t)}$	
		(ii)t exp (-t)	
		(iii) $\frac{1}{1+exp(t)}$	
		$(iv)\frac{1}{1+exp(-t)}$	
В		Answer all question briefly	2x5
	i)	A point (1,2) undergoes a nonlinear mapping through 2 radial basis functions $\phi(X) = e^{(-r^2/2)}$ where r is the distance from the cluster center. Assume the center points of the clusters are (0,0) and (4,6).	
	ii)	Consider a single perceptron with sign activation function. The perceptron is represented by weight vector $[0.4 - 0.3 \ 0.1]^t$ and a bias $\theta = 0$. If the input vector to the perceptron is $X = [0.2 \ 0.6 \ 0.5]$ then the output of the perceptron is :	
	iii)	There are two clusters C1 and C2 having C1= $[(1,2), (2,4), (4,4), (1,6)]$ and C2= $[(4,6), (8,8), (10,10), (10,8)]$.	
	C	Find the cluster centers of C1 and C2. State in which class an unknown point (5,5) will belong?	
	iv)	y (3.0) ○ -9x+3y+4=0 4x+5y-20=0	

		Find the margins of the point P1 for the above two decision boundaries in the figure.			
	v)	Match the following network and thei	r applications		
		A. Convolutional Neural Network	I) Speech recognition		
		B. Auto encoder	ii) Automatic feature extraction		
		C. Decision Tree	iii) Bagging		
		D. Random forest	iv) Categorical data classification		
2.	a)	Define the following terminologies i) Activation function ii) Perceptron	TOKISI	3x2	
	b)	A Multilayer perceptron is classifyin 10 from MNIST dataset. 100 feature multilayer neural network having wineurons [120,30] is used. i) Draw the network with its symboli ii) Calculate number of parameters to layers except the input layer. Iii) Suggest a suitable optimization in classification. Justify your reason. iv) suggest a cost function to be used its formula.	es was extracted from each image. A th two hidden layers of number of c diagram. b be optimized including bias in all nethod which can be used for this	2x4	
	c)	Discuss how radial basis function res	solves XOR problem.	6	
3	a)	Compare Multiplayer perceptron and network (CNN) in classification problems of both the	olem. Discuss advantages,	6	
	b)	State the names of different layers in a examples.	a CNN and state their functions with	8	

	(c)	The following image A was convolved with a kernal B. Find out the	6
		-	
		12 19 94 42	
		22 4 😂 41	
		4 4 6 6 4	
		24 42 99 42 b 1 d	
4.		Table 9.1 (Control Sendent Credit Buy	
		S. No. Age Income Sentent Create Buy S. No. Age Medium No Fair Ves	
		4 1 Yes Fair Yes	
		5 540 Low Yes Excellent No	
		7 31-40 Low Yes Excellent Yes 7 Medium No Fair No	
		8 30 Neumann Yes Fair Yes	
		Medium Yes Fair Yes	
		11 c90 Medium les Excellent Ves	
		12 31-40 High Yes Fair Yes	
		14 ×40 Medium No Excellent No	
		a) In respect of the decision tree problem, compute entropy of the dataset.	2+1+
			2 1
		b) State how many attributes are there in the table.	
		b) Find out the gain for all the attributes.	4x4
		c) Calculate split info S(D), and Gain ratio G (S, A="Income"), G (S,	
		A="Credit")	
		Hints:	
		Splir Info _a (D) = $-\sum_{i=1}^{n} \frac{ D_{i} }{ D } \times \log_{2} \left(\frac{ D_{i} }{ D } \right)$	
		Jan 1110/10 [D]	
		Gán[S.d] = Enempy(S)	
		y design	
	($-\sum_{i \in I} \frac{p(i)}{\log \operatorname{transp}(i, i)}$	
		rinel M	1
		d) Based on the Gain, which attribute should be picked up as the next	
		attribute.	
			1.0
5.	a)	Cluster the following eight points (with (x, y) representing locations) into three clusters:	10
		A1(2, 10), A2(2, 5), A3(8, 4), A4(5, 8)	
	1		

	Initial cluster	centres are: A1(2, 10), A4(5, 8) a	and A7(1, 2).		
The distance function between two points $a = (x1, y1)$ and $b = (x2, y2)$ is defined as-						
P(a, b) = x2 - x1 + y2 - y1						
	Use K-Means iteration.	s Algorithm to f	ind the three cl	uster centers at	ter the second	
	Fill the followi	ng table for 2 ite	rations using K-	Means clusterino	9	
	Given Points	Distance from center (2, 10) of Cluster-01	Distance from center (5, 8) of Cluster-02	Distance from center (1, 2) of Cluster-03	Point belongs to Cluster	
	A1(2, 10)				11/01	
	A2(2, 5)			, (OF	
	A3(8, 4)			M		
	A4(5, 8)			700,		
			chi			
b)		machine learni		ering and K-near gorithm of K-N		10
•		- KIND				
a)	derivation.	Assume (X_i, X_i)	$(Y_i), i = 1, 2, 3, \dots, i$	cessary mathem N are the given smeters N and another N	input-output	12
	$b_1 = \frac{\sum_i (X_i - X_i)}{\sum_i (X_i - X_i)}$	X_i . Show that $X_i = X_i \cdot (Y_i - Y_i)$ $X_i = X_i \cdot (X_i - X_i)^2$ at				
	<u>i=1</u>		$b = \overline{V}$ $b \overline{V}$			

	b)	Fill up the following table and find out the values of b_0 and b_1 . St No. Height (X) Weight (Y) $\{X, X\}$ $\{Y, Y\}$ $\{X, Y\}$ $\{Y, Y\}$ $\{Y, Y\}$ $\{X, Y\}$ $\{Y, Y\}$	8
7.		Write short notes (any two)	10x2
	a)	Support vector machine	
	b)	Auto encoder	
	c)	Stochastic Regression	
	d)	Backpropagation learning.	
		entral Institute of Technology \ entral	