Total number of printed pages: Programme (UG) 7th Semester/UECE711A 2022

Microwave Theory and Techniques

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

	1		 1
1	(a)	Given for propagating TE $_{10}$ mode in a rectangular waveguide $(a \times b)$	
		$H_z = A \cos \frac{\pi x}{a} e^{-j\beta z}$ A/m, where symbols have their usual meanings,	10
		find the expressions of E_x , $E_y \& H_x$, H_y . Hence, determine the	
		expression of the wave impedance.	
	(b)	Explain why a rectangular waveguide is preferred over a square	5
		waveguide for usual microwave transmission.	
	(c)	Explain why TM_{10} or TM_{01} is not possible in rectangular waveguide.	5
	(a)	A 6 GHz electromagnetic wave propagates in a rectangular waveguide,	
		the separation between the planes being 3cms. Determine the cut-off	
		wavelength of the dominant mode, the guide wavelength of the	10
2		dominant mode, the corresponding group as well as phase velocities,	
2		and the characteristic wave impedance.	
	(b)	Explain why TE ₁₀ is called dominant mode.	5
	(c)	Explain why TEM is mot supported by a hollow metallic waveguide	5
	(a)	What is Scattering Matrix and Explain why 'scattering Matrix'	
		representation of a microwave network is preferred over	5
3	C	Z-matrix or Y-matrix representation	
3	(b)	Discuss briefly the different properties of S matrix	6
	(c)	Prove that for a reciprocal network the scattering matrix is a	9
		symmetrical matrix.	9
	(a)	Discuss with neat sketch the operation principle of operation of	7
4		Precision type variable attenuator.	,
	(b)	Discuss the working principle of a 'Magic-T'	5
<u></u>			

	(c)	Obtain the scattering matrix equation of a 'Magic-T' by using the necessary properties of the scattering matrix	8
	(a)	Explain the working principle of a reflex klystron oscillator.	8
5	(b)	Explain what is meant by 'velocity modulation' and how this phenomenon is used in the operation of a klystron tube.	5
	(c)	Draw the power vs repeller voltage and frequency vs repeller voltage characteristics of a reflex klystron. Explain qualitatively.	7
	(a)	Explain with neat sketch the oscillation mechanism of a magnetron	10
6	(b)	Derived the expressions of Hull cut-off magnetic field and Hull cut-off voltage in Magnetron oscillator.	10
7	(a)	Explain the slotted line method for the measurement of unknown Impedance.	8
,	(b)	Describe the procedure for measuring (i) VSWR (< 20) and (ii) VSWR (>20) using a VSWR meter in a microwave bench.	12
	C	entral Institute of Technolos	