$Total\ number\ of\ printed\ pages: \qquad \textbf{Programme} (\textbf{UG}) / \textbf{Semester}\ \textbf{VII} / \textbf{UECE602}$

2025

Computer Networks

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

		Central Institute Of Technology	
1.	a)	Why do we need a DNS system when we can directly	2+6=8
		use an IP address? Explain the different types of DNS	
		used in the internet.	
	b)	Explain with a neat diagram, connection establishment	6+2=8
		in TCP using three-way handshaking. What is SYN	
		flooding attack?	
	c)	In a 4-Mbps token ring network, how long does it take	2
		for a station to produce the 3-byte long token. Take	
		the speed of propagation in the cable as 60% of the	
		speed of light.	
	d)	A bit string 01111011111101111110 needs to be	2
	ŕ	transmitted at the data link layer. What is the string	
		actually transmitted after bit stuffing?	
2.	a)	Discuss classful addressing and classless addressing in	5+2=7
		IPv4? What are the flaws in classful addressing?	
	b)	Find the first address, last address and the block size	7
		of the following block- 123.56.77.32/29.	
		Write the address lines in the block.	
	c)	The following character encoding is used in a data	6

		link protocol: A- 01000111; B- 11100011; FLAG-01111110; ESC-11100000. Write the bit sequences transmitted in binary for the four-character frame A B ESC FLAG using i) character count, ii) flag bytes with byte stuffing, c)	
		starting and ending flag bytes with bit stuffing.	
3.	a)	Draw the IPv4 datagram header format. Explain any three important fields of the header format.	8
	b)	A host sending 100 datagrams to another host. If the identification number of the first datagram is 1024, what is the identification number of the last?	2
	c)	Data link protocols almost always put the CRC in a trailer rather than in a header. Why?	2
	d)	What do you mean by congestion control? Name some open-loop and closed-loop congestion control techniques. Discuss any two of these techniques	8
4.	a)	Describe a general architecture of Electronic Mail.	6
	b)	Explain binary exponential backoff algorithm with the help of an example.	4
	c)	What is ATM switching? Explain the ATM architecture. What are the various ATM layers? What are their responsibilities?	2+3+5= 10
5.	a)	Suppose the length of a 10Base5 cable is 2300m. If the speed of propagation in a thick coaxial cable is 2×10^8 m/sec, how long does it take for a bit to travel from the beginning to the end of the network? Assume there is 8μ sec delay in the equipment.	4
	b)	In a system using Stop-and-Wait ARQ protocol, each	4

		1	
		packet carries 1000 bits of data, how long does it take	
		to send 10,000 bits of data if the distance between the	
		sender and the receiver is 5000km and the propagation	
		speed is 2×10^8 m/sec. Ignore any delay.	
	2)		2
	c)	Why there is no need for CSMA/CD on a full-duplex	2
		Ethernet LAN?	
	d)	Describe World Wide Web (WWW) as a client/server	4+6=10
		architecture. Discuss HTML, HTTP and URL in this	
		context.	
6.	a)	i) An IPv4 fragment has arrived with an offset value	2
		of 100. How many bytes of data were originally sent	
		by the source before the data in this fragment?	
		ii) Calculate the HLEN value in IPv4 if the total	2
		length is 1200 bytes. Consider 1176 bytes of data	
		coming from the upper layer.	
		6.44	
	b)	What is maximum transfer unit (MTU). Write the	5
		MTU values of various commonly implemented	
		network technologies. How fragmentation at the	
		source is related to the MTU?	
		2015.12000	_
	c)	Describe the send window of Go-Back-N ARQ.	5
	d)	What is resolution? Elaborate recursive resolution and	1+5=6
		iterative resolution with relevant diagram.	
7.		Write short notes on -i) HDLC frames, ii) point-to-	5*4=20
		point versus broadcast links, iii) p-persistent CSMA,	
		iv) Stop-and-wait ARQ.	
