Total number of printed pages:

Programme(UG)/UECE516C

2023

OPTIMIZATION THEORY

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer Q-8 any four questions from the rest.

Central Institute Of Technology

1.	a)	State the difference between constrained and unconstrained optimizations	2
	b)	Define convex and concave function. State whether the following functions are convex or concave. Identify its maxima and minima. a) $f(x)=4x^3-48x+10$ b) $f(x)=2-3x-4x^2$	8
	c)	Consider the following problem $f(x)=x^2+54/x$ Assume initial search interval (0,5). Apply Golden section search method for 3 iterations and find the solutions. ESTD: 2006	10
2.	a)	Find the stationary points of the function: $f(x_1, x_2) = 2 x_1^3 - 3 x_1^2 - 6 x_1 x_2 (x_1 - x_2 - 1)$ i) Which of these points are local minima, which are local maxima, and which are neither. ii) How many minimum exist along the joining $\begin{bmatrix} 0,1 \end{bmatrix}^T$ and $\begin{bmatrix} 1,2 \end{bmatrix}^T$	10
	b)	What are the conditions of convexity of a second order function at a given point. State whether the following functions are convex on the given points For $f(x 1, x 2) = x_1^4 + x_2^3 - 2x_1^2x_2 + 4$	6
	c)	What are the difference between Direct search method and Gradient-based methods. Name any two direct search methods and any three gradient-based methods for multi-variable optimization	4
3	a)	Find whether the given direction s at the point x is descent for the	6

		respective function:	
		$f(x, x) = 2x^2 + x^2 - 2x^2 + 10 + 1^2 + 10 + 1^2$	
		For $f(x_1, x_2) = 2x_1 + x_2 - 2x_1x_2 + 10x_1/x_2, at(i)s = [1, 1]^2, (ii)x = [2, 3]$	
	b)	State Kuhn-Tucker (KT) condition for Non-linear programming	2
	c)	Write down KT conditions for the following	12
		$Maximize: 3 x_1^2 - 2 x_2$	
		subject to	
		$2x_1 + x_2 = 4$, $x_1^2 + x_2^2 \le 19.4$,	
		x1≥0	
		Find out whether points $(0,4)^T$ and $(3,4,-2,8)^T$ are KT points or not.	
1		Kokrajhar : : Bodoland	
ŀ.	a)	Describe Random Search algorithm for the optimization of a NLP problem.	6
	b)	Consider the following NLP problem	14
		$f(x_1, x_2) = (x_1 - 3)^2 + (x_2 - 4)^2$	
		subject to	
		$\sigma_{\rm c}(x) = 26 - (x - 5)^2 + x^2 > 0$	
		$g_1(x) = 20^{-1}(x_1 - 5) + x_2 \ge 0$	
		$x_1, x_2 \ge 0$	
		Assume initial point $(3,3)^{T}$ and the initial interval is $(6,6)^{T}$. Assume other required parameters as your choice. Continue the above problem for	
		consecutive 3 iterations.	
	a)	What do you mean by Linearization of a non linear function at a point.	3
		Show with example in $f(x_1, x_2) = (x_1 - 3)^2 + (x_2 - 4)^2$ at $(4, 5)^7$	5
	b)	Discuss Frank-Wolfe optimization algorithm	5
	c)	Linearize the following NLP problem at $x=(1,2)^T$	5
		Minimize $f(x) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$	
		subject to	
		$g_1(x) = 26 - (x_1 - 5)^2 - x_2^2 \ge 0,$	
		$g_2(x) = 20 - 4x_1 - x_2 \geq 0,$	
		$x_1, x_2 \ge 0.$	

÷,

	d) Solve the above problem using Frank Wolfe's method for 1 iteration. Assume a suitable value for the necessary user defined parameters.	7
6.	a	Write any five comparative statements between the traditional optimization and evolutionary algorithm.	5
	b	Classify which of the following algorithms are traditional and evolutionary algorithms	2
		i) Gray-Wolf optimization, ii) Levenberg-Marquardt optimization iii) Biogeography-based optimization iv) Gradient-descent optimization	
	c)	State the Key-steps of Genetic algorithm. Give suitable examples for explaining each of the steps.	10
	d)	Discuss the differences between Roulette Wheel selection and Rank selection. Central Institute Of Technology	3
	W	rite short notes(Any two)okrajhar : : Bodoland	10x2
	a)	Particle Swarm Optimization	
	b)	Simulated Annealing	
	c)	Conjugate gradient Algorithm	
	d)	Parallel subspace property for the quadratic optimization.	
	A)	Select the correct alternatives	10x1
	a)	An inflection point means	
		i) A minimum ii) A maximum iii) Either a maximum or a minimum	
		iv) Neither a maximum nor a minimum	
-	b)	तमसा मा ज्यातिगमय	
	0)	i) is 2D projection of high a line is a local	
		i) A closed curve formed the dimensional function values	
		iii) Results errol formed by the equation	
-		in) Results equal function function values on a contour line.	
_		(V) All of the above	
	c)	Golden section reduces search range by a factor of in each iteration	
		i) 0.5 ii) 0.618 iii) 0.382 iv) either 0.618 or 0.382	
	A)	Newton's method faile	
	u)	rewith s method fails	

.

	ii) if the problem is a maximization problem	
	iii) When Hessian matrix can not be estimated	
	iv) When the Hessian matrix can not be inverted.	
e)	The Gausse's method	
	I) Does not involve Hessian matrix for optimization	
	ii) Approximately estimate the Hessian matrix with the gradient vectors	
	iii) There is no requirement of the Hessian matrix	
	iv) None of the above	
f)	An unidirectional search is used for	
	i) Searching a mimimum or maximum in a one variable function	
	ii) Searching the nearest mimimum or maximum to a point.	
	iii) searching the minimum value at a particular direction.	
	iv) None of the above.	
g)	Hessian is a	
	i) A scalor number	
	ii) A vector	
	iii) A rectangular matrix	
	iv) A square matrix	
h)	Generally the cooling schedule in simulated annealing is	
	i) Linearly increasing ESTD. : 2006	
	ii) Linearly decreasing सता मा सत गमय	
	iii) Exponentially increasing	
	iv) Exponentially decreasing	
i)	Mutation probability in Genetic Algorithm is kept	
	i) Very small	
	ii) Nearly equal to one	
	iii) A random variable between 0 and 1.	
	iv) Decreases gradually over iterations.	
j)	The inertia parameter in the velocity equation of PSO is kept at	
	I) Very small	
1 1	ii) Nearly equal to one	

	iii) A random variable between 0 and 1	
	iv) A random variable between -1 and 1.	
B)	Answer these short answer types questions	
a)	Find out the Hessian matrix at $(2,2)^{T}$ $f(x_{1}, x_{2}) = x_{1}^{3} + x_{1}^{2} + (x_{2} - 4)^{3}$	2
b)	Is the above Hessian matrix positive definite?	1
c)	Find the value of \mathcal{A} using along the direction $(1,2)^T$ for minimizing the following function	3
	$f(x_1, x_2) = (x_1 - 4)^2 + (x_2 - 5)^2$	
d)	Find out the most elite solution in the population in Genetic algorithm for minimizing the following function	2
	$f(x_1, x_2) = (x_1 - 4)^2 + (x_2 - 5)^2$ i) $(2,2)^T$ ii) $(-2,2)^T$ iii) $(4,3)^T$ iv) $(3,5)^T$	
e)	What do you mean by conjugate direction. How it is different from descent direction?	2

