Total number of printed pages:

UG/5th /UECE516C

2022

Optimization Theory

Full Marks : 100

Time : Three hours

anar The figures in the margin indicate full marks for the questions.

Answer **Q-1** and any four questions from the rest.

1.	А	Answer any ten questions.	10x1
	a)	A convex function is guaranteed to have	
		i) One Minimum	
		ii) One Maximum	
		iii) More than one minimum	
		iv) More than one maxima	
	b)	The contour plots of a parabolic hypersurface is	
		i) Concentric circles	
		ii) Concentric ellipses	
		iii) concentric rectangles	
		iv) None of the above	
	c)	Which of the following optimization method is not a gradient based	
		method?	
		I) Golden section search	
	C	ii) Secant's method	
		iii) Levenbarg-Marquardt algorithm	
		iv) Newton's method	
	d)	A function is given as	
		$f(x) = x^2 + 54/x$	
		I) f(x) has a minima at x=3	
		ii) f(x) has a maxima at x=3	

	iii) f(x) has a maxima in x=-3
	iv) $f(x)$ has a minima at x=-3.
e)	A simplex search method needs a minimum ofpoints to for an N variable optimization
	i) N
	ii) N+1
	iii) N-1
	iv) 2N
f)	An unidirectional search is used for
	i) Searching a mimimum or maximum in a one variable function
	ii) Searching the nearest mimimum or maximum to a point.
	Iii) searching the minimum value at a particular direction.
	iv) None of the above.
g)	Hessian is a
	i) A scalor number
	ii) A vector
	iii) A rectangular matrix
	iv) A square matrix
h)	Minimum can not be obtained for a quadratic function when
	i) The absolute gradient is very large
	ii) the absolute gradient is very small
	ii) The Hessian is positive definite
	iii) The Hessian is negative definite
i)	A KT point is
C	J Guarrenteed to be an optimum
	ii) A possible candidta to be an optimum
	iii) Only states whether the point is feasible or not.
	iv) None of the above
j)	A solution in the genetic algorithm is analogous to
	a) A Chromosome
	b) A Gene
	c) A Cell

		d) A species	
	k)	Generally the cooling schedule in simulated annealing is	
		i) Linearly increasing	
		ii) Linearly decreasing	
		iii) Exponentially increasing	
		iv) Exponentially decreasing	
	1)	Which of the following method is not a biologically inspired algorithm?	
		i) Genetic algorithm	
		ii) Particle swarm optimization	
		iii) Ant colony optimization	
		iv) Simulated annealing	
1	B)	Answer any five questions	5 x 2
	a)		
	C	In the above figure, (a,b) is the search range. x1 and x2 are two points and f(x1)>f(x2). State which of the following is correct? i) The minimum cannot lie between x 1 and x2 ii) The minimum can not lie between x2 and b iv) None of the above	
	b)	Which of the following direction is a conjugate direction when $ \begin{array}{l} y^{(1)} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \\ H = \begin{pmatrix} 2 & -2 \\ -2 & 8 \end{pmatrix} \\ Hints: \begin{pmatrix} (y_i)^t H \ y_j = 0 \end{pmatrix} \end{array} $	

		i) $\begin{pmatrix} 7\\1 \end{pmatrix}$	
		$\binom{1}{7}$	
		$ \begin{array}{c} \left(-7\\1\end{array}\right) $ iii)	
		iv) $\begin{pmatrix} 7\\-1 \end{pmatrix}$	
	c)	The linear approximation of $f(x)$ in the close proximity to a point $x^{(t)}$ is	
		$p f'(x-x^{(t)})$	
		i) $f(x^{(t)}) - \nabla f(x^{(t)})(x - x^{(t)})$	
		iii) $f(x^{(t)}) + \nabla f(x^{(t)})(x - x^{(t)})$	
		iv) $\nabla f(x^{(t)})(x-x^{(t)})$	
	d)	The inversion of the $H = \begin{pmatrix} 2 & 4 \\ -4 & 8 \end{pmatrix}$ is	
	e)	In a minimization problem of $f(x_1, x_2) = (x_1 - 10)^2 + (x_2 - 5)^2$, five	
		$\begin{pmatrix} 1 \\ 2 \\ 10 \end{pmatrix} \begin{pmatrix} -2 \\ 10 \end{pmatrix} \begin{pmatrix} 10 \\ 2 \end{pmatrix} \begin{pmatrix} 7 \\ 1 \end{pmatrix} \begin{pmatrix} 8 \\ 5 \end{pmatrix}$	
		following solutions $\langle 2, \langle 10 \rangle, \langle 2 \rangle, \langle 1 \rangle$, and $\langle 3 \rangle$ are generated randomly. Find out two most ellite solutions.	
	f)	Which of the following terminology are associated with the partcile	
	,	swarm optimization.	
		I) Local best solution	
		ii) Global best solution	
	C	iii) Momentum	
		iv) All of the above	
2.		Identify the following algorithm (Only name of the algorithm)	10

		Algorithm	
		Step 1 Choose a lower bound a and an upper bound b . Also choose a small number ϵ . Normalize the variable x by using the equation $w = (x-a)/(b-a)$. Thus, $a_w = 0$, $b_w = 1$, and $L_w = 1$. Set $k = 1$.	
		Step 2 Set $w_1 = a_w + (0.618)L_w$ and $w_2 = b_w - (0.618)L_w$. Compute $f(w_1)$ or $f(w_2)$, depending on whichever of the two was not evaluated earlier. Use the fundamental region-elimination rule to eliminate a region. Set new a_w and b_w .	
		Step 3 Is $ L_w < \epsilon$ small? If no, set $k = k + 1$, go to Step 2; Else Terminate .	
		Consider the following algorithm	
		$f(x) = x^2 + 54/x$	
		a) Assume $a=0$ and $b=5$ in step 1. Find W_1 , W_2 , and L_w in consecutive two iterations.	
	1	b) Solve the above problem using Newton-Raphson's method for three $\binom{1}{2}$	9
		consecutive iterations. Assume initial point $x^{(1)}=1$. Find $x^{(2)}$ and	
		$x^{(3)}$.	
3	a)	Find the stationary points in the following equations	8
		(i) $f(x_1, x_2) = x_1^2 + 2x_2^2 - 4x_1 - 2x_1x_2.$ (ii) $f(x_1, x_2) = 10(x_2 - x_1^2)^2 + (1 - x_1)^2.$	
	b)	What do you mean by descent direction? Find whether the given	8
		direction s at the point x is the descent for the respective functions.	
		(i) For $f(x_1, x_2) = 2x_1^2 + x_2^2 - 2x_1x_2 + 4$,	
		$s = (1, 1)^T, x = (2, 3)^T.$	
		(ii) For $f(x_1, x_2) = x_1^4 + x_2^3 - 2x_1^2x_2^2 + 10x_1/x_2^2$,	
	C	$s = (-1, 2)^T, \qquad x = (0, 1)^T.$	
	c)	State parallel subspace property for the optimization of a quadratic function.	4
4.	a)	State Kuhn-Tucker (KT) condition for Non-linear programming	3
	b)	Write down KT conditions for the following	10
		Maximize $3x_1^2 - 2x_2$	
		subject to	

		$2x_1 + x_2 = 4$	
		$x_1^2 + x_2^2 \le 19.4$,	
		$x_1 \ge 0$	
		Find out whether points $(0,4)^T$ and $(3.4,-2.8)^T$ are KT points or not.	
	c)	Minimize $f(x_1, x_2) = (x_1 - 2)^2 + (x_2 - 2)^2$	
		Subject to $x_1 + x_2 \le 2$	
5.	a)	State Frank-Wolfe algorithm for NLP.	10
		In an NLP problem, the following constraints are used:	
		$g_1(x) = (x_1 - 5)^2 + x_2^2 - 25 \le 0,$	
		$g_2(x) = x_1 + 2x_2 - 12 \le 0,$	
		$g_3(x) = 2x_1 + x_2 + 4 \ge 0.$	
		Convert the above NLP program to a Linear programming problem when $\frac{(1)}{(1,1)^T}$	
		the initial problem $x^{(-)} = (1, 1)^{(-)}$	
	1		10
-	b	State the following steps with examples of Genetic algorithm	10
6	a)	State the algorithm of Particle swarm optimization. Explain local best solution and global best solution.	8
	b)	Minimize the following objective function using PSO.	12
		$f(x_1, x_2) = (x_1 - 5)^2 + (x_2 - 10)^2$	
	G	Fill the following table for 2 iterations of PSO. Assume the initial velocity of all	
		particles as $egin{pmatrix} 0 \\ 0 \end{pmatrix}$.	
		The velocity equation is as follows	
		$v^{i}(n+1) = \eta v^{(n)} + c_{1} \cdot r_{1}(X^{i}(n) - X_{localbest}) + c_{2} \cdot r_{2}(X^{i}(n) - X_{globalbest})$	
		Assume $c_1{=}c_2{=}0.5$ and $r_1{=}r_2{=}0.1{\wedge}0.3respectively$. Assume $\eta{=}1$. T	

$f(x_1)$ $f(x_1, x_2)$ $v(n)$ $X(n+1)$	
X ₂	
(1)	
2	
(5)	
1	
	4
(8)	
10	
(6)	
Local best	
Global best	
7 Write short notes (Any two)	10 x2
a) Simulated Annealing	
b) Powel's conjugate gradient algorithm	
c) Conjugate Gradient algorithm	
d) Lagranzian Duality theory	
e) Cauchy's (steepest descent) Method	
	_