UG/5th Sem/UECE504

2024

DIGITAL SIGNAL PROCESSING

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1.	a)	Determine the output sequence of the system with impulse response	
		$h[n] = \left(\frac{1}{4}\right)^n \times u[n]$, when the input is the complex exponential sequence	10
		(4) n n	
		$x[n] = 4 \times e^{j\pi - \frac{\pi}{2}}; -\infty < n < \infty.$	
	b)	Determine the inverse z-transform of $X(z) = \frac{z+2}{2z^2 - 7z + 2}$ using partial	3+3+4
		fraction expansion method and if the ROC's are (i) $ z > 3$, (ii) $ z < \frac{1}{2}$ and	
		(iii) $\frac{1}{2} < z < 3$.	
2.	a)	Show that an LTI system with system function ' $H(z)$ ' is BIBO stable if	
		and only if the ROC for $H(z)$ contains the unit circle.	5+5
	b)	Discuss what will happen in z-plane if the poles in s-plane are integer	
		multiples of $\left(\frac{2\pi}{T}\right)$; where 'T' is the sampling time.	
	c)	Two causal systems with impulse responses $h_1[n] = a \times \delta[n] + \delta[n-1]$ and	
		$h_2[n] = b^n \times u[n]$, where $ b < 1$, are connected in cascade as shown below.	10
		$\frac{x[n]}{h_1[n]} \xrightarrow{h_2[n]} \frac{y[n]}{h_2[n]}$	
		Determine the frequency response $H(e^{j\omega})$ of the overall system. Find the	
		values of 'a' and 'b' for which $ H(e^{j\omega}) = 1$.	
3.	a)	Consider the system shown below:	10

		a) Find the impulse response $h(n)$ of the system b) Find the frequency response of the overall system c) Specify a difference equation that relates the output to the input.	
	b)	Discuss the stability criteria of an IIR-system using 'Bi-linear Transformation' technique. What is pre-warping?	7+3
4.	a)	Draw and establish the complete signal flow-graph of an 8-point DIT-FFT technique.	12
	b)	Calculate the 8-point DIT-FFT of the given sequence: $x(n) = \{1, 2, 3, 4, 4, 3, 2, 1\}$.	8
5.	a)	A LPF is designed with the following desired frequency response: $H_{d}\left(e^{j\omega}\right) = \begin{cases} e^{-j2\omega}; & -\pi/4 \le \omega \le \pi/4 \\ 0; & -\pi/4 \le \omega \le \pi. \end{cases}$ Determine the filter coefficients ' $h_{d}(n)$ ' if the window function is defined as $w(n) = \begin{cases} 1; & 0 \le n \le 4 \\ 0; & \text{elsewhere.} \end{cases}$ Also find the modified filter frequency response $\left(H\left(e^{j\omega}\right)\right)$ of the designed filter.	10
	b)	Show that the transfer function of a linear-phase FIR filter is given by $H\left(e^{j\omega}\right) = e^{-j\omega\left(\frac{N-1}{2}\right)} \times \left[h\left(\frac{N-1}{2}\right) + \sum_{k=1}^{\binom{N-1}{2}} 2h\left(\frac{N-1}{2}-k\right) \times \cos\left(\omega k\right)\right].$	
6.	a)	Show that linear phase FIR filters have symmetric impulse response characteristics, i.e., $h(n) = h(N-n-1)$.	10
	b)	An FIR filter (N=11) is characterized by the following transfer function: $H(z) = \sum_{n=0}^{N-1} h(n) \times z^{-n}$. Determine the magnitude response and also prove that the phase and group delays are constant.	8

XXXXXXXXXXXX