Total number of printed pages: 3

UG/5th Sem/UECE504

2024

DIGITAL SIGNAL PROCESSING

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1.	a)	A causal LTI system is characterised by the difference equation	
		$y(n) = \frac{1}{4}y(n-1) + \frac{1}{8}y(n-2) + x(n) - x(n-1)$. Find the system function	10
		' $H(z)$ ' and the unit impulse response ' $h(n)$ '.	
	b)	Determine the inverse z-transform of $X(z) = \frac{z+2}{2z^2 - 7z + 2}$ using partial	10
		fraction expansion method and if the ROC's are (i) $ z > 3$, (ii) $ z < \frac{1}{2}$ and	
		(iii) $\frac{1}{2} < z < 3$.	
2.	a)	There are two kinds of particles inside a nuclear reactor. Every second, an ' α ' particle will split into eight ' β ' particles and a ' β ' particle will split into a ' α ' particle and two ' β ' particles. If there is a single ' α ' particle in	14
		the reactor at time $t = 0$, how many particles are there altogether at time $t = 100$?	
	b)	Two causal systems with impulse responses $h_1[n] = a \times \delta[n] + \delta[n-1]$ and	
		$h_2[n] = b^n \times u[n]$, where $ b < 1$, are connected in cascade as shown below.	6
		$\frac{x[n]}{h_1[n]} h_2[n] y[n]$	
		Determine the frequency response $H(e^{j\omega})$ of the overall system. Find the	
		values of 'a' and 'b' for which $ H(e^{j\omega}) = 1$.	
3.	a)	Consider the discrete-time system shown below. For what values of 'k' is the system BIBO stable?	10

XXXXXXXXXXXXXX