UG/5th Sem/UECE504

2022

DIGITAL SIGNAL PROCESSING

Full Marks: 100

Time: Three hours

	Time: Three hours						
The figures in the margin indicate full marks for the questions.							
Answer any five questions.							
1.	a)	Determine the output sequence of the system with impulse response					
		$h[n] = \left(\frac{1}{4}\right)^n \times u[n]$, when the input is the complex exponential sequence	10				
		$x[n] = 4e^{j\pi \frac{n}{2}}; -\infty < n < \infty \& A = 4.$					
	b)	Given that $H(z) = \frac{z+1}{z^2 - 0.9z + 0.81}$ is a causal system, find the: (a) transfer function representation	3+2+5				
2	0)	(b) difference equation representation (c) impulse response representation.					
2.	a)	Show that an LTI system with system function $H(z)$ is BIBO stable if					
		and only if the ROC for $H(z)$ contains the unit circle.	5+5				
	b)	Discuss what will happen in z-plane if the poles in s-plane are integer					
		multiples of $\begin{pmatrix} 2\pi \\ T \end{pmatrix}$; where 'T' is the sampling time.					
	c)	Two causal systems with impulse responses $h_1[n] = a \times \delta[n] + \delta[n-1]$ and					
		$h_2[n] \neq b^n \times u[n]$, where $ b < 1$, are connected in cascade as shown below.	10				
	- 5	$\frac{x[n]}{h_1[n]} h_2[n] y[n]$					
		Determine the frequency response $H(e^{j\omega})$ of the overall system. Find the					
		values of 'a' and 'b' for which $ H(e^{j\omega}) = 1$.					
3.	a)	Consider the discrete-time system shown below. For what values of 'k' is the system BIBO stable?	10				
		the system DIDO suble:					

6.	a)	Show that linear phase FIR filters have symmetric impulse response	10
		characteristics, i.e., $h(n) = h(N-n-1)$.	
	b)	A differentiator is a continuous-time LTI system with the system function	5+5
		$H_{c}(s) = s$. A discrete-time LTI system is constructed by replacing 's' in	
		$H_{c}(s)$ by the following transformation known as the bilinear	
		transformation: $s \rightarrow \frac{2}{T_s} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right)$, to simulate the differentiator. Choose	
		$T_{\rm c}$ as a part of the design procedure.	K
		i) Draw a diagram for the discrete-time system.ii) Find the frequency response of the discrete-time system.	2
		W KOKION	
		xxxxxxxxxx	
		chi	
		ctill	
		103	
		ALC .	
	~		
	U		