Total number of printed pages: 2

UG /5th Semester/UECE503

2024

DIGITAL COMMUNICATION SYSTEMS AND STOCHASTIC PROCESS

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1.	a)	State 'Sampling Theorem' for a band limited low-pass signal. What is meant by 'aperture effect' in flat-top sampling?	3+3 = 6
	b)	Show that the output quantization SNR in a binary PCM is given by	10
		$SNR _{Q,dB} = 1.8 + 6 \times n$; where 'n' is the number of bits in a code word.	
	c)	Discuss briefly the operation of a binary PCM.	4
2.	a)	Discuss the operation of a delta modulator. What are the two sources of	6+2+2 =
		noise in the delta modulator? Discuss briefly.	10
	b)	If the power spectrum of a signal is given by $S_{xx}(\omega) = \frac{10}{\left[1 + \left(\frac{\omega}{10}\right)^2\right]^2}$ and	10
		the 6-dB bandwidth is 10 rad/s, calculate the r.m.s bandwidth, where the	
		r.m.s bandwidth is given by $W_{rms} = \sqrt{\frac{\int_{-\infty}^{\infty} \omega^2 \times S_{XX}(\omega) d\omega}{\int_{-\infty}^{\infty} S_{XX}(\omega) d\omega}}$.	
3.	a)	Prove that a 1 st order predictor in a DPCM is a unit-delay block.	5
	b)	Show that the error probability for digital baseband signalling is given by	10
		$P_e = Q\left(\frac{d}{2}\right)$; where 'Q' is the Q-function given by $Q(k) = \frac{1}{2} \int_{-\infty}^{\infty} e^{-x^2/2} dx$	
		$\sqrt{2\pi} J_k$	
	c)	Show that the signal ' $p(t)$ ' and the matched filter impulse response are	5
		mirror images of each other.	

4.	a)	A baseband binary system transmits the signal $s_1(t)$ for binary 'l' and	15
		$s_2(t)$ for binary '0', where	
		$s_{1}(t) = \begin{cases} A ; 0 \le t \le T/2 \\ A/2 ; T/2 \le t \le T \\ 0 , elsewhere \end{cases} \text{ and } s_{2}(t) = \begin{cases} A/2 ; 0 \le t \le T/2 \\ -A/2 ; T/2 \le t \le T \\ 0 , elsewhere. \end{cases}$	
		The channel may be assumed to be AWGN with noise PSD of $\binom{N_0}{2}$, and	
		the symbols are equi-probable. Find the energy of the two transmitted signals and hence find the average energy per bit. Also find the probability of bit error ' P_e '.	
	b)	Explain why polar signals are preferred over uni-polar signals for a given value of input SNR at the front end of a receiver.	5
5.	a)	Show that the BER (average error probability) for a polar NRZ signal using	10
		matched filter technique is given by $P_e _{Polar,NRZ} = Q\left[\sqrt{\frac{2E_b}{\eta}}\right]$; where the	
		symbols have their usual meaning.	
	b)	If a signal ' $x(t) = A \times \cos(\omega_0 t + \theta)$ ' is periodic with ' T_0 '; then prove that	4
		its auto-correlation ' $R_{xx}(\tau)$ ' is also periodic with ' T_0 '.	
	c)	White noise with 2-sided PSD of $\binom{N_0}{2}$, passes through an ideal LPF with	6
		a bandwidth of 'W' Hz. Determine the output noise power.	
6.	Wr	ite short notes on any <i>two</i> of the following	10x2 = 20
	a)	Line codes for binary signal.	
	b)	PCM bandwidth.	
	c)	First order and second order (strict sense) stationary process.	
	d)	Matched filter.	

XXXXXXXX