CENTRAL INSTITUTE OF TECHNOLOGY, KOKRAJHAR (Deemed to be University, MHRD, Govt. of India) KOKRAJHAR:: BTAD:: ASSAM :: 783370 END – SEMESTER EXAMINATION

Session: Jan-June 2024 Semester: 5th(Back) Time: 3Hr Full Marks: 100

Course Code: UECE501

Course Title: Electromagnetic Waves

5 X 20 =100

1. (a) Convert points P(1, 3, 5) from Cartesian to cylindrical and spherical coordinates.

Answers any five questions

(b) Given the vector field H = ρzCosφ a_ρ + ρ⁻²Sin φ/2 a_φ + ρ²a_z at point(1, π/3, 0), find
(i) H. a_x (ii) H × a_θ (iii) The vector component of H normal to surface ρ = 1
(iv) The scalar component of H tangential to the plane z = 0. (5+5+10)

- 2. (a) Write down Maxwell's equations for time varying electromagnetic fields: when the media is homogeneous, source-free, loss-less, isotropic and linear.
 - (b) Obtain an expression of wave equation of a conducting medium.
 - (c) What do you mean by perfect conductor?
 - (d) Explain Maxwell's fourth equation of modified Ampere's circuital law. What is displacement current?
 - (e) A charge distribution in free space has $\rho_V = 2r nC/m^3$ for $0 \le r \le 10m$ and zero otherwise. Determine E at r = 2m (4+4+2+5+5)
- 3. (a) Derive the expressions of the electric and magnetic fields of an electromagnetic wave propagating in a lossy dielectric medium.
 - (b) What do you understand by the term loss tangent and what is its physical significance.
 - (c) Obtain the Poynting theorem for the conservation of energy in an electromagnetic field and discuss the physical significance of each term in resulting equation. (11+3+6)
- 4. (a) Derive the expressions for the reflection co-efficient & transmission co-efficient and their relationship when a plane wave propagating along the +Z direction is incident normally on the boundary z = 0 between medium 1 (z < 0) characterized by $\sigma_1, \epsilon_1, \mu_1$ and medium 2 (z > 0) characterized by $\sigma_2, \epsilon_2, \mu_2$
- (b) In free space (z ≤ 0), a plane wave with H_i = 10 Cos(10⁸t − βz)a_x mA/m is incident normally on a lossless medium (ε = 2ε₀, μ = 8μ₀) in region z ≥ 0. Determine the reflected wave H_r, E_r and the transmitted wave H_t, E_t (10+10)
- 5. (a) Establish the boundary conditions for electric and magnetic field intensities and the interference between two dielectric media.
 - (b) Explain how these conditions will be modified, if one of the media is a perfect conductor.

CENTRAL INSTITUTE OF TECHNOLOGY, KOKRAJHAR (Deemed to be University, MHRD, Govt. of India) KOKRAJHAR:: BTAD:: ASSAM :: 783370 END – SEMESTER EXAMINATION

Session: Jan-June 2024

Semester: 5th(Back) Time: 3Hr Full Marks: 100

Course Code: UECE501

Course Title: Electromagnetic Waves

- (c) Two extensive homogeneous dielectrics meet on plane z = 0. For z > 0, ε_{r1} = 4 and for z < 0, ε_{r2} = 3. A uniform electric field E₁ = (5a_x 2 a_y + 3a_z) kV/m exists for z ≥ 0. Find (i) E₂ for z ≤ 0 (ii) the angles E₁and E₂ make with interface. (8+4+8)
- 6. (a) Derive an expression for the input impedance Z_{in} of a lossless transmission line, in terms of relevant parameters, when the line is terminated into impedance Z_L .
 - (b) Deduce relation between reflection co-efficient and VSWR.
 - (c) A transmission line of characteristics impedance 50Ω is terminated by resistor of 100 Ω . What will be the VSWR in the line? Calculate impedances at the voltage minimum and maximum positions. (10+5+5)