Total number of printed pages:

Programme (UG) 5th Semester/UECE501

2022

Electromagnetic Waves

Time : Three hours

The figures in the margin indicate full marks for the questions.

			Electromagnetic Waves	C
			Full Marks : 100	2º
			Time : Three hours	in the
			The figures in the margin indicate full marks for the questions.	0
			Answer any five questions.	Y
	1	(a)	Convert point T(0,-4,3) and S(-3,-4,-10) from Cartesian to cylindrical co- ordinates	6
		(b)	Transform vector $Q = \frac{\sqrt{x^2 + y^2}a_x}{\sqrt{x^2 + y^2 + z^2}} - \frac{y^2a_z}{\sqrt{x^2 + y^2 + z^2}}$ to cylindrical co-ordinate.	9
		(c)	Evaluate Q at T in the Cartesian and cylindrical coordinate systems.	5
	2	(a)	Prove that the electric field at a point (r>a) due to a uniformly charged Sphere of radius a is the same as the whole charge is located at the centre of the sphere.	9
		(b)	A circular disk of radius a uniformly charged with $\rho_s C/m^2$. If the disk lies on the $Z = 0$ plane with its along the Z-axis, (i) Show that at point (0,0,h) $E = \frac{\rho_s}{2\varepsilon_0} \left\{ 1 - \frac{h}{[h^2 + a^2]^{\frac{1}{2}}} \right\} a_z$ (ii) From this, derive the E field due to an infinite sheet of charge on the Z = 0 plane. (iii) If $a \ll h$, show that E is similar to the field due to a point charge.	11
	3	(a)	Derive the expressions of the electric and magnetic fields of an electromagnetic wave propagating in a lossy dielectric medium.	10
		(b)	Derive the expression of intrinsic impedance η and $ \eta \& \theta_{\eta}$	5
		(c)	What do you understand by the term loss tangent and what is its physical significance.	5
ô	4	(a)	State and prove the Uniqueness theorem.	10
		(b)	Derive Poynting theorem and discuss the physical significance of each term in resulting equation	10
-	5	(a)	Establish the boundary conditions for electric and magnetic field intensities at the interference between two dielectric media.	8

	(b)	Explain how these conditions will be modified, if one of the media is a perfect conductor.	5
	(c)	If $X < 0$ defines region 1 and $X > 0$ defines region 2, then find the electric field intensity in region 2 ($\epsilon_{r1} = 5$), if electric field intensity in region 1($\epsilon_{r2} = 1$) is $\vec{E}_1 = (4\hat{u}_x + 1.5\hat{u}_y - 2\hat{u}_z)$ V/m.	7
6	(a)	Derive an expression for the input impedance Z_{in} of a lossless transmission line, in terms of relevant parameters, when the line is terminated into impedance Z_L .	10
	(b)	Show that for a lossless transmission line the input impedance of a line repeat over every $\lambda/2$ distance.	4
		At a frequency of 80 MHz, a lossless transmission line has a characteristic impedance of 300Ω and a wavelength of 2.5m. Find the value of L and C.	6
	(a)	Derive the expressions for reflection co-efficient (Γ) and transmission coefficient (τ) when an electromagnetic wave incident from a medium characterized by ($\sigma_1, \mu_1, \epsilon_1, \eta_1$) to a medium characterised by ($\sigma_2, \mu_2, \epsilon_2, \eta_2$) normally at the boundary.	8
	(b)	What is VSWR? Derive its expression in terms of reflection co-efficient (r).	4
7	(c)	Given a uniform plane wave in air as $E_i = 40Cos(\omega t - \beta z)a_x + 30Sin(\omega t - \beta z)a_y V/m$ (i) Find H_i (ii) If the wave encounters a perfectly conducting plate normal to the Z axis at Z=0, find the reflected wave $E_r \& H_r$. (iii) What are the total E and H fields for $Z \le 0$?	8