2023

SUBJECT NAME: Digital Logic Design

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

Central Institute Of Technology

4	T .	Central institute of recimology	
1.	(a)	Write down excitation table and truth table of j-k master slave flip flop.	2 x 2=4
	b)	Write down the main difference between the above two table.	1
	c)	Explain the excitation table and the truth table of j-k master slave flip flop.	3 x 2=6
	d)	Write down the truth table and symbol of a clocked j-k latch	2 +1=3
	e)	What is the main difference between a clocked latch and mater slave flip flop	1
	f)	Draw the block diagram of a Mater slave D flip flop and explain the function with timing diagram	1+4=4
2.	a)	Draw the circuit of i) S_R latch ii)S_R latch with enable	2
	b)	What is the function of this above enable input.	1
	c)	What do you understand by data hazard? Explain how is that same problem is solved by using pulse triggered latch.	1+5=6
	d)	Draw the circuit of a j-k latch	2
	f)	Convert a j-k latch into s-r latch using synthesis method	9
3.	a)	Draw the block diagram of a 2 bit asynchronous counter and explain it's function with the help of timing diagram.	2+4 = 6
	b)	Explain how the synchronous function is different than asynchronous function	1
	c)	Draw the symbol and function table of a negative edge triggered D master slave Flip flop.	1+1=2
	d)	Design a Mod-6 counter using j-k positive edge triggered mater slave flip flop	11

4.	a)	Draw and explain the state transition table of j-k flip flop	
	(b)		2+2=4
		single clock pulse when j=0 and k=0	2
	(c)	clock pulse (1st clk pulse s=1 and k=0 2nd clk pulse s=0 r=0)	2
	(d)	Design a Mod-8 counter using j-k negative edge triggered mater slave flip flop	12
5.	a)	Use k map method to simplify the following functions	4+4+2=10
		i) $F(A,B,C,D) = \sum m(2,5,7,8,9,10,11,12,13)$	
		ii) $f(m,n,o,p) = \pi M(1,2,3,5,7,9,10)$	
		iii) $f(a,b,c)=\sum m(0,1,4,5)$	
	b)	Use Boolean algebraic techniques to simplify (xy'+x'y)'(x+y)	1
	c)	Use basic gates to draw the logic diagram of Y= (a+b)'a'b'c without changing the function	1
	d)	Use only NOR gate to implement Y=(a+b'+c)(a+c')	2
	e)	Design a 2 bit comparator	6
6.	a)	Draw the block diagram of the following	2x2=4
		i) 3 bit SISO right shift register	
		ii) 2 bit synchronous down counter	
	b)	Use basic gates to draw Y= xyz'+x'y'z+x'y'z'+x'yz'	3
	c)	Convert the following	3
		i) Decimal 67 to octal	
		ii) Hexadecimal F12 into binary	
		iii) Binary 11.01 into decimal	
	d)	Convert a s-r latch into j-k latch using synthesis method	10
7.	a)	State De- morgan's theorems	2
	b)	Distinguish the following	2+2=4
		a) Sequential logic and combinational logic	
		b) Edge triggering and pulse triggering of latch	,
	c)	Derive the characteristics equations of j-k flip flop	4
	d)	Use only NAND gate to realize Y=ab+b'c+ca'	3
	e)	Use two half adder and a AND gate to design a full adder	7

T ...