Total number of printed pages: 4

UG/3rd Semester/UECE304

2023

NETWORK THEORY

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1. a) What is the difference between loop and mesh? Find the voltage across 3Ω 2+5=7 resistor in the circuit shown in Figure-1(a) using Superposition theorem.

b) State and prove maximum power transfer theorem. In the following circuit 5+2=7Figure-1(b), when $R = 0 \Omega$, the current I_R equals to 10 A. The maximum power will be?

Figure-1(b)

c) Find the voltage across the 2Ω resistor as shown in Figure-1(c).

6

2. a) Calculate the Fourier transforms of the following:

(i) $e^{-2(t-1)}U(t-1)$ (ii) $e^{-3|t-1|}$

4+7=11

Find the trigonometric Fourier series for the triangular periodic signal f(t) as shown in Figure-2.

b) Define the Laplace transforms and inverse Laplace transform. Find the 3+3+3=9 Laplace transform of the following functions

(i)
$$f(t)=e^{-3t}(\cos 2t + \frac{5}{2}\sin 2t)$$

(ii) $f(t)=e^{at}.\cos(\alpha t).u(t)$
Stand at an analysis of the second s

3.	a)	Find the inverse Laplace transform of the following functions	5+4=9
		(i) $I(s) = \frac{s^2 + 5s + 9}{s^3 + 5s^2 + 12s + 8}$ (ii) $H(s) = \frac{s^2 + 3s + 5}{(s+1)(s+2)(s+3)}$	
	b)	In R-L series circuit R=5 Ω , L=2.5 mH and i(0 ⁻)=2A. If a source of 50V is applied at t=0. Find i(t) for t \rangle 0.	6
	c)	Find the transient responses a series R-C circuits having DC excitation.	5
4.	a)	Find the open circuit driving point impedance at terminals 1-1' of the ladder network shown in Figure-3.	5

Figure-3

b) Show that the driving-point impedance function of the network in Figure-4, by continued fraction, becomes $\frac{s^4+3s^2+1}{2s^2+1}$

- c) The denominator polynomial of transfer function for a network is as below: $Q(s) = s^4+s^3+2s^2+2s+12$. Form the Routh array and verify for stability of the network.
- d) Find the transfer functions $G_{21}(s)$, $Z_{21}(s)$ and driving point admittance $Y_{11}(s)$ of the two-port network shown in Figure-5.

5 a) What is poles and zeros in network functions? Write the criterion for 3+4+3+3= stability of active network in terms of root locus plot. Plot the poles and 13 zeros in the s-plane for the following network.

(i)
$$\mathbf{F}(s) = \frac{s^2 + 4s + 3}{s^2 + 2s}$$
 (ii) $\mathbf{F}(s) = \frac{(s+2)(s^2+9)}{(s^2+4)(s^2+4s+5)}$

5

5

5

- b) Express ABCD parameters in terms of Z-parameters and h-parameters
- 6
- a) Two two-port networks shown in Figure-6(a) and 6(b) are connected in series. Obtain the Z-parameters of the resulting network. Also verify the result by direct calculation.

- b) The bandwidth of a series resonant circuit is 500 Hz. If the resonant frequency is 6000 Hz, what is the Q-factor? If $R = 10 \Omega$, what is the value of the inductive reactance at resonance? Calculate the inductance and capacitance of the circuit.
- c) Write a short note on passive filter network. Derive the condition for reciprocity and symmetry in case of T-parameters.

5+4=9

5

7

6