Programme: UG/3rd/UECE302

DEC 2023

DIGITAL SYSTEM DESIGN

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.


Answer any five questions.

Central Institute Of Technology

1.	a)	Represent (-59) ₁₀ using 8-bits in sign-magnitude, 1's complement and 2's complement form. Draw and explain the circuit which can implement 2's complement addition.	3+3
	b)	Draw and explain the circuit to perform BCD addition using 4-bit binary adders.	4
	c)	State all the basic postulates of Boolean algebra. Using these, evaluate:	4+6
		(i) $x + 1$ (ii) $x + x$ (iii) \overline{x} (iv) $x + \overline{x}y$	
2.	a)	List all the single variable boolean functions. Determine the number of distinct boolean functions possible using n-variables.	2+2
	b)	Design a gray to binary code converter circuit using K-map method.	6
	c)	Implement $F(w, x, y, z) = \sum m(0,1,2,4,5,6,8,9,12,13,14)$ using only 2x1 multiplexers.	8
3.	a)	Explain the Variable Entered K-map method using the borrow output function of a full subtractor.	6
	b)	Design an 8x3 priority encoder with a 'valid' output. Find the simplified Boolean expression for each output.	6
	c)	Design an array multiplier which can multiply any two 4-bit numbers.	8
4.	a)	Draw and explain the working of a NAND gate based level-triggered D flip-flop. Show how it can be converted into an edge-triggered flip-flop.	6
	b)	Design a 3-bit synchronous counter which will count in forward direction when $x = 0$ and in backward direction when $x = 1$, where x is an external input.	8
	c)	Designs a 4-bit parallel-in parallel-out (PIPO) register based on D flip-flops	6

and explain its operation.

- 8 5. Design a mode-10 asynchronous (ripple) DOWN-counter and explain its working with the help of timing diagram.
 - b) Design a Moore-FSM which can detect the sequence 101 with overlap. 6
 - 6 c) Design a circuit to generate a pulse that remains HIGH for 3 consecutive clock cycles, goes LOW for the next 2 consecutive clock cycles, and repeats indefinitely.
- 9 Implement $f_1(A, B, C) = \sum m(3,5,7)$ and $f_2(A, B, C) = \sum m(4,5,7)$ using 6. appropriate PROM, PAL and PLA architectures.
 - b) List out and define four most important metrics which determine the 4 performance of any logic families.
 - c) With the help of a neat circuit diagram, explain the working of a TTL 7 NAND gate. entral institute Of Technology

