Total number of printed pages:3

UG/3rd/UECE302

2021

DIGITAL SYSTEM DESIGN

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions. Answer any five questions.

1.	a)	Explain the steps involved in converting an M-ary digital signal to its binary equivalent by taking the case of M=100.	4	
	b)	(i) The binary number corresponding to (2AC.7E) ₁₆ is	2+2	
		the position corresponding to 2^3 is		
	c)	Describe a digital controller using pseudocode that can ON/OFF an air cooler if the temperature sensor gives 1°C greater/lesser than the reference temperature.	4	
	d)	List the basic types of operations available in a Hardware Description Language (HDL).	4	
	e)	Show how one can synthesize a <i>for loop</i> construct in HDL into two very different types of hardware design style.	4	
2.	a)	Write the VHDL code for structural description of a 4x1 multiplexer.	5	
	b)	What do you understand by a test bench in VHDL? Describe it in the case of a 4x1 multiplexer.	5	
	c)	In VHDL, distinguish between the following-		

1

		(i) 'bit' and 'std_logic' in port declaration	2+3
		(ii) Data flow architecture and procedural architecture	
	d)	Describe a 4-bit ripple carry adder in three-level hierarchical architecture.	5
3.	a)	Explain why we use PMOS transistors to pull-up the output to HIGH voltage and NMOS transistors to pull- down it to LOW voltage.	5
	b)	Design a CMOS circuit to implement the Boolean function, $Y = \overline{(A + B) \cdot C}$	5
	c)	Draw the circuit diagram of a TTL inverter and explain its working in different regions of operation as the input voltage is raised from 0 to 5V.	6
	d)	What are the most important parameters by which we can compare the performance of different logic families?	4
4.	a)	List out all the Boolean functions possible with the	
		mapping $\{0, 1\}^2 \rightarrow \{0, 1\}$ and write the corresponding Boolean expressions.	6
	b)	Prove the following theorems using the Boolean algebra clearly stating the postulates used in each step.	3+3+3
		(i) $x \cdot x = x$ (ii) $x \cdot 0 = 0$ (iii) $(x')' = x$	
	c)	Given $f(a, b, c) = a.b + a.c + b.c$, find the canonical POS form using the Boolean algebra and represent it in terms of the maxterms	5
5.	a)	Design a 1-bit magnitude comparator with inputs A and	5
		B, and outputs G (A >B), L (A <b) (a="B)." and="" e="" show<="" td=""><td></td></b)>	

		that $E = \overline{G + L}$.	
	b)	Distinguish between the operation of common-cathode and common-anode type 7-segment LED display. Write the truth table in each case.	5
	c)	Find the simplified expression for the Boolean function $f(a, b, c, d, e) = \sum (2,3,6,7,9,13,18,19,22,23,24,25,29).$	5
	d)	Explain the principle behind the design of an n-bit look-ahead carry adder and state its advantage over the ripple carry adder.	5
5	a)	Implement a 16x1 MUX using only 4x1 MUXs	4
	b)	Explain how we can implement an 8-variable Boolean function using only 6-variable look up tables (LUTs).	5
	c)	Design a mod-10 asynchronous counter using negative edge triggered J-K flip-flop having clear inputs.	5
	d)	Design a Mealy machine which can detect the sequence '110'.	6
7.	a)	Design the following Boolean functions using PLA and PAL architectures.	4+4
		$f_1(a, b, c) = m_0 + m_1; \ f_2(a, b, c) = m_0 + m_2 + m_7;$	
		$f_3(a, b, c) = m_1 + m_7,$	
	b)	Draw the circuit diagram of a static RAM cell and explain how the write and read operation is conducted.	4
	c)	What are the disadvantages of purely Finite State Machine (FSM) based digital system design and explain how this is overcome in a Register Transfer Level (RTL) design. Demonstrate it with the help of an appropriate example.	8
			IRAJING