Total number of printed pages: 2

no

2022

ELECTRONIC DEVICES

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1.	a)	Explain the lattice structure of single crystalline Silicon with the help of a	5
		diagram and compute the volume density of Si atoms in this structure.	
	b)	Compare the surface density of (100) and (111) Si-crystal planes.	5
	c)	Write the Schrodinger equation for a particle inside a 3D infinite-wall	10
		potential box and determine its complete solution.	
2.	a)	State Bloch's theorem and explain its physical significance. Write all the	2+6
		four boundary conditions for a Kronig-Penny potential.	
	b)	For a particle in a periodic 1D potential $V(x) = V_0 \sum_{k=-\infty}^{\infty} \delta(x - ka)$,	10+2
		show that certain energy ranges are forbidden. Draw the resulting reduced	
		bandstructure diagram.	
3.	a)	Explain the concept of effective mass of charge carriers in semiconductors.	5
	b)	Derive the expression for the number of electrons and holes in	6+4
		Semiconductors using Boltzmann approximation. Using it, determine the	
		location of Fermi-level for intrinsic semiconductors.	
	c)	Show that the occupation of donor impurity level is negligible at room	5
		temperature.	
4.	a)	Draw the charge density, electric field and electric potential varies for a p-n	6
	- (junction diode as a function of position.	
	b)	Differentiate between drift and diffusion current components of electrons.	6
		In equilibrium condition, show that a built-in potential will be developed	
		across a p-junction.	
	c)	Derive the expression for the depletion region width across a reverse-biased	8
		p-n junction diode.	
5.	a)	Derive the expression for continuity equation for holes in a semiconductor.	5+5
		Solve it show how the minority carrier concentration profile on the n-side	
		of a p-n junction diode under forward bias.	

	b)	State the law of junction. Draw and show how different components of	2+4+4
		currents vary along the length of a p-n junction diode. Plot the V-I	
		characteristics of a n_n junction diode and derive the value of its dynamic	
		enaracteristics of a p-in junction didde and derive the value of its dynamic	
		resistance under forward bias condition.	
6.	a)	Draw energy band diagram for a p-n-p transistor at equilibrium and after	6
		the application of Forward Active bias	
	b)	Define (i) emitter injection ratio, (ii) base transport factor and (iii)	6
		Common-Base current gain for a n-n-n transistor	
		common Duse current gam for a p n p transistor.	4
	c)	Express the collector current as a function of base current and explain the	4+4
		output characteristics in common-emitter configuration. What is base width	
		modulation and avalain have it affasts the output shows to initial	
		modulation and explain now it affects the output characteristics?	
7.	a)	With the help of neat schematic diagram explain the working of an n-	6
		channel JFET for zero and reverse bias junction voltage.	
	1		(
	(b)	Using energy band diagram, explain the mechanism of funnelling in Zener	6
		diode during its breakdown.	
	c)	Explain the process steps involved to fabricate an n-channel MOSFET in a	8
		n-type wafer.	

are in the set of the