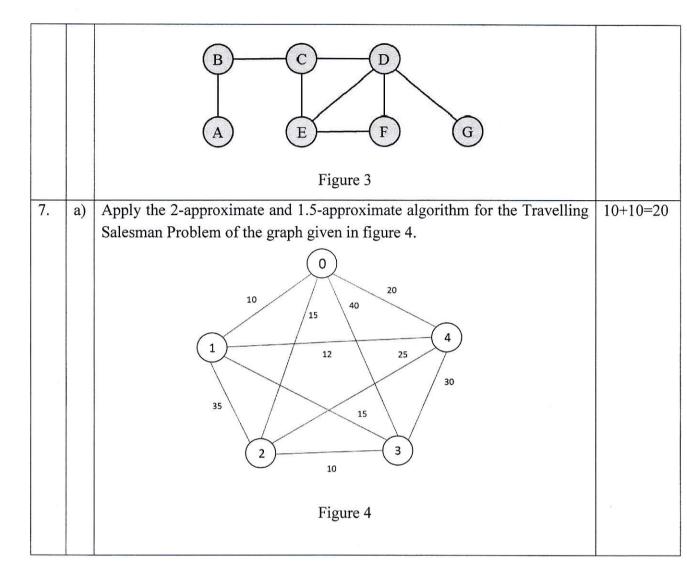
Total number of printed pages: 3

UG/7th Semester/UCSE701

2024

Advance Algorithms (Back)

Full Marks : 100


Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1		(i) Solve the recurrence relation.	10		
1.	a)	$5\times 2=10$			
		$T(n)=2T(\sqrt{n})+1$, $T(1)=1$.			
		(<i>ii</i>) Set up a recurrence relation for the following algorithm and solve it.			
		ALGORITHM S(n) //Input: A positive integer n Step 1. if n = 1			
		Step 2. return 1			
		Step 3. else			
		Step 4. return $S(n-1) + 1/n$			
			10		
	b)	Prove that the average case time-complexity of quick sort is O(n log n)			
2.	a)	Suppose we're doing a sequence of n operations (numbered 1, 2, 3,) on a	10		
		data structure in which the ith operations cost is as follows:			
		$cost = \begin{cases} 1 & if i \neq power of 2 \\ i & if i = power of 2 \end{cases}$			
		For example, the following table shows the costs for each of the first few			
		operations:			
		operation number: 1 2 3 4 5 6 7 8 9			
		cost: 1 2 1 4 1 1 1 8 1			
		Use aggregate analysis to determine amortized cost per operation.			
	b)				
		analysis			
3.	a)	Solve the following 0/1 knapsack problem by Dynamic programming	g 10		
		(weight limit W=11):			
		Item Weight(wi) Value(vi)			
		1 1 1			
		2 2 6			

	b)	Trace the execution of vertex cover problem using Approximation algorithm of the graph given in figure 3. Also find the Approximation ratio $(p(n))$.					
6	a)	P class, NP class, NP hard and NP complete.					
		-	Figure 2		10		
			7 3				
5.		Solve the APSP problem using Floyd-Warshall's algorithm for the graph given in figure 2:					
		Figure 1					
		S 4 10 9 7 T					
		9 V_1 12 V_3 20					
		graph given in figure 1.					
	b)	execution of Ford-Fulkerson algorithm to find the maximum flow of the					
4.	a)	Compute the time complexity of Ford-Fulkerson algorithm to find the maximum flow of the graph.					
	b)	1/32 respectively. Find the Huffman code for letter a, b, c, d, e, f.					
					10		
		5 7	22				
		3 5	18				
