Programme(UG /7th Semester/UCSE701

2022

Advance Algorithms

Full Marks : 100

Time : Three hours

raina' The figures in the margin indicate full marks for the questions.

Answer any five questions.

1.	a)	You are given a collection of <i>n</i> bolts of different widths and <i>n</i>										
		corresponding nuts. You are allowed to try a nut and bolt together, from										
		which you can determine whether the nut is larger than the bolt, smaller										
		than the bolt, or matches the bolt exactly. However, there is no way to										
		compare two nuts together or two bolts together. The problem is to match										
		each bolt to its nut. Design an algorithm for this problem with average-case										
		efficiency in $O(n \log n)$.										
	b)	Prove that the average case time-complexity of quick sort is O(n log n)										
	Ý											
2.	a)	Suppose we re doing a sequence of n operations (numbered 1, 2, 3,) on a										
		data structure in which the ith operations cost is as follows:										
		$cost = \begin{cases} 1 & if \ i \neq power \ of \ 2 \\ i & if \ i = power \ of \ 2 \end{cases}$										
		For example, the following table shows the costs for each of the first few										
		operations:										
		operation number: 1 2 3 4 5 6 7 8 9										
		cost: 1 2 1 4 1 1 1 8 1										
		Use aggregate analysis to determine amortized cost per operation.										
	b)	Find the amorti	zed cost p	er operation of au	gmented stack us	ing potential	10					
	Ć	analysis										
3.	a)	Solve the following 0/1 knapsack problem by Dynamic programming										
		(weight limit W=11):										
			Item	Weight(w _i)	Value(vi)							
			1	1	1							
			2	2	6							
			3	5	18							

			4	6	22							
			5	7	28							
	b)	Suppose the letters a, b, c, d, e, f have probabilities ¹ / ₂ , 1/4, 1/8, 1/16, 1/32, 1/32 respectively. Find the Huffman code for letter a, b, c, d, e, f.										
4.	a)	Compute the time complexity of Ford-Fulkerson algorithm to find the maximum flow of the graph.										
	b)	State the Max-flow min-cut theorem for network flow analysis. Trace the execution of Ford-Fulkerson algorithm to find the maximum flow of the graph given in figure 1. 9 V_1 12 V_3 20 T 13 V_2 14 V_4 4 Figure 1										
5.	C	Solve the APS given in figure	P problem 2:	i using Floyd-Wa	rshall's algorithr	n for the graph	20					
6	a)	Define the class	ses P and I	NP. Discuss diagra	ammatically the	relations among	10					
	b)	Trace the execution of vertex cover problem using Approximation algorithm of the graph given in figure 3. Also find the Approximation ratio $(p(n))$.										

