2022

Data Structure & Algorithm

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer question **no 1** and any **four** from the rest.

		<u> </u>	
1.	a)	Which of the following is a non-linear data structure?	10 x 2
		(i) 2-D array (ii) Stack (iii) Binary search tree (iv) Linked list	
	b)	In an array a[2] is equivalent to	
		(i) *a + 2 (ii) *(a + 2) (iii) *(*a + 2) (iv) &(a + 2)	
	c)	What is the main disadvantage of array data structure?	
	d)	What should be the content of stack (assumed that initially it is empty) after the operations: pop(); push(1); push(2); pop();	
		(i) 1 (ii) 2 (iii) 12 (iv) Invalid operation	
	e)	Which of the following data structures finds its use in recursion?	
		(i) Stack (ii) Queue (iii) Array (iv) Linked list	
	f)	A queue follows the principle	
		(i) LIFO (ii) FIFO (iii) Priority (iv) Random	
	g)	What is the time complexity of the binary search algorithm?	
		(i) Q(n), (ii) O(1) (iii) O(logn) (iv) O(n ²)	
	h)	In a connected graph of <i>n nodes</i> and <i>n edges</i> , we can conclude that	
	0	(i) Must be one cycle (ii) May be a cycle (iii) At most one cycle (iv) None	
×,	i)	In a full binary tree of <i>height d</i> , the number of node is	
,		(i) 2^d (ii) $2^d + 1$ (iii) $2^{d+1} - 1$ (iv) $2d$	
	j)	The number of fields in each node to represent a binary tree is	
		(i) 1 (ii) 2 (iii) 3 (iv) 4	

	2.	a)	What is data structure? What are the primitive data structures?	5
		b)	Define Algorithm. What is the time complexity of an algorithm?	5
		c)	Write the algorithm of bubble sort. What is its time complexity?	10
	3.	a)	Define the linked list. What is the time complexity to search a linked list?	4+2
		b)	Write the delete operation of a particular node of a linked list.	8.0
		c)	What is sparse matrix? Write an efficient way to represent a sparse matrix.	6
	4.	a)	Define queue. What are the operations of a queue?	4+2
		b)	Explain the <i>insert()</i> and <i>delete()</i> operation in a queue.	6
		c)	Define recursion. Write a recursive function to calculate <i>n</i> !.	8
	-			2 (
	5.	a) b)	What is meant by tree traversing? Describe any tree traversal technique. Traverse the following tree using your described technique.	2+6
			2 3 4 5 6 7 8 9 0 10	
		c)	Convert the infix (a+b)*(c+d)/f into postfix & prefix expression	6
	-	-)	Described Described Secret (DES) is a small described	0
	6.	a)	Describe the Depth First Search (DFS) is a graph traversal algorithm Apply the above algorithm on the following graph	8 7
2	×	b)	2 3 4 5 6 7 10	
		c)	Calculate the number of edges in K_n (Complete graph with edge n)	5