Total number of printed pages: 10

Programme(UG)/5th/UCSE513 (comp.)

2024

ARTIFICIAL INTELLIGENCE

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1.	a)	What should Computer possess for acting as humanly?	6
	b)	What is Perception and Action? Explain the Perception and Action cycle.	8
	c)	Explain the state space graph with an example.	6
2.	a)	Write down the steps of Defth First Branch and Bound (DFBB) algorithm.	10
	b)	Mention the role of heuristic function in the A* algorithm.	4
	c)	Apply the AO* algorithm for Solving the Matrix Multiplication problem	6
		using the dimension of matrices $A_1 = 5*7$, $A_2 = 7*4$, $A_3 = 4*6$.	
3.	a)	Evaluate the MAX (α -value) from the given below figure using alpha beta	8
		$(\alpha - \beta)$ pruning algorithm Mention the $\alpha - \beta$ values at every level	0
		(\propto p) praiming argorithmit. Wonttoh the α -p values at every level.	
		MIN	
		MAX MAX MAX	
		(MIN) (MIN) (MIN) (MIN) (MIN) (MIN) (MIN) (MIN) (MIN)	
		M M M M M M	
	b)	Maximize the function $f(x) = (3x^2 + x)$ over the range of integers from 07.	12
		Apply a genetic algorithm to solve this problem. Show at least the possible	
		solution (i.e. near to termination criteria).	
		(Note: x represent five-digit unsigned binary integers, $f(x)$ value itself a	
		fitness solution, Coding in binary form having 3-bit string length (represent	
		8 numbers. Four chromosomes (100, 101, 011, 110) as initial populations	
		Decode individual for further evaluation (like fitness i.e. $(3r^2+r)$ (101=5:	
		$3*5^2+5=80$) probability random number crossover and mutation)	
		5 5 5 00), probability, random number, crossover and matation).	
4	a)	What is the purpose to apply genetic algorithm?	2
	h)	What are the key steps of genetic algorithm?	2 0
	c)	Why hill climbing search is in the category of local search algorithm?	0
	<u>с)</u> д)	What are the limitations of hill climbing search?	3
	u)	what are the minitations of min eminoring search?	0
_	117 1		
5.	Write short notes on the following (any four):		4x5 = 20

	a)	Backpropagation Neural Network	
	b)	Breadth first search	
	c)	Propositional logic	
	d)	Best first search	
	e)	Quantifiers of predicate logic	
6.	Differentiate between the following (any four):		4x5=20
	a)	OPEN and CLOSED Lists	
	b)	AND and OR node (AO* Algorithm)	
	c)	Iterative Deepening and Decision tree	
	d)	Propositional logic and Predicate logic	
	e)	Forward chaining and Backward chaining	