Formal Language and Theory of Automata

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer Question 1 and any four questions from the rest.

- Q1. Consider a language $L = a^p b^q c^r d^s$ where p+q=r+s, and p,q,r,s>0.
 - a) Design a Turing Machine for the above-mentioned language.
 - b) Trace your machine with the input $a^3b^4c^6d^1$.

(15+5)

- Q2. Consider the following language and identify their class.
 - a) $a^p b^q c^r$ where p, q, r > 0
 - b) $a^p b^q c^r$ where p, q, r > 0 and p = q
 - c) $a^p b^q c^r$ where p, q, r > 0 and p + q = r
 - d) $a^p b^q c^r$ where p, q, r > 0 and p > q > r

 (4×5)

Q3.

a) Design a DFA that accepts any string w over the $\Sigma = \{a, b\}$ where the numbers of a are multiples of 3 and numbers of b are multiples of 2.

b) Consider the following Mealy machine and convert it to its equivalent Moore machine

Present state	x = 0		x = 1		x = 2	
	Next state	Output	Next state	Output	Next state	Output
→ q ₀	q ₀	a	q ₁	a	q ₂	b
q ₁	q ₂	a	q ₀	b	q ₃	a
q ₂	q1	a	q ₂	Ъ	q4	b
q ₃		ral lastii Cokraiha	ute C _{di} Tech ar : : Bodola		q ₅	ь
q4	q ₃	С	q ₀	b	q 5	С
q ₅	q ₂	b	q ₁	a	q_0	С

(10+10)

Q4.

Construct PDA for the following languages -

- a) WW^R , where $W = \{ \text{any string of having } \boldsymbol{a} \text{ s and } \boldsymbol{b} \text{ s } \}$
- b)WcW^R where W = {any string of having a s and b s }
- c) Identify the basic difference between the two different PDAs you have constructed.

(8+8+4)

Q5.

a) Consider the following language –

L1 = Regular

L2 =Context Free

L3 =Context Sensitive

What will be the type of the following languages? Discuss briefly.

- i) L1 UL2 UL3
- ii) $L1 \cap L2 \cap L3$
- iii) $L1 \cap (L2 \cup L3)$
- iv) $(L1 \cap L2) \cup L3)$

v) L1 $U(L2 \cap L3)$

b) Consider the following Grammar and design a Finite Automaton for it.

 $A->aB\mid a,B->bcdE,$, $E->eE\mid f$

(15+5)

Q6.

- a) Justify the following statement "All recursive languages are recursively enumerable".
- b) Consider a Language L is recursively enumerable and its complement L' is also recursively enumerable. Can you conclude more on Language L? (Discuss briefly).

Central Institute Of Technology

c) Convert the following Grammar into – Greibach and Chomsky's Normal Form

$$S \rightarrow aAbBdDeE, A \rightarrow B \mid a \mid \epsilon, B \rightarrow b \mid \epsilon, D \rightarrow d \mid \epsilon$$

(5+5+10)

