Total No. of printed pages = 4

19/5th Sem/UCSE503

2021

FORMAL LANGUAGE AND AUTOMATA THEORY

Full Marks - 100

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

- (a) Consider the regular expression (ab)*abba.
 Design a non-deterministic finite automata (NFA) that accepts the regular expression.
 - (b) Design an equivalent deterministic finite automata (DFA) for your developed NFA in the previous question.
 - (c) Minimize the DFA.

(d) Given an automaton M, how will identify whether it is a DFA or NFA?

[Turn over

 (a) Consider the following Moore machine and construct an equivalent Mealy machine.

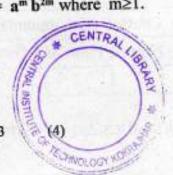
Present state	Next state		Output	
Present state	a=0	a=1		
→ q0 /2	q	q_2	.1	
q, /*	q_i	q_3	1	
q, / 3/	q_2	q ₃	1	
ANOLO Q3	q_s	q ₆	0	
q ₄	q_2	q ₁	1	
q ₅	q ₅	q ₆	0	
q ₆	q_2	q ₆	1	

(b) Consider the following Mealy machine and construct an equivalent Moore machine. 6

Present state	a = 0		a = 1	
	Next state	Output	Next state	Output
$\rightarrow q_0$	\mathbf{q}_{i}	1	q ₂	1
q ₂	q,	0	q ₃	1
q ₂	q,	1	q _i	1
q ₃	q _s	- 1	q ₄	0
q,	q,	1.2	q ₂	0
q _s	q,	1	q,	0

- (c) Write down the regular expression for the following languages on {a, b, c}
 - (i) L1=All strings ends with a followed by b.
 - (ii) L2=All strings having two occurrence of "a" or two occurrence of "c".
 - (iii) L3=All even length string. 2×3=6
- (a) Construct a regular grammar that generates a language a^x b^y c^x, where x, y, z ≥ 0.
 - (b) Write down the pumping lemma for regular language. 4
 - (c) Use your pumping lemma to prove that a language L = a^m, where m = n³ for all n ≥ 0 is not regular.
 8
- (a) Consider the grammar G and generate an equivalent grammar X without null productions.

$$S \rightarrow aABD$$
, $A \rightarrow BC \mid a \mid \epsilon$, $B \rightarrow b \mid \epsilon$, $C \rightarrow d$, $D \rightarrow d \mid \epsilon$.


(b) Convert your grammar X in to Chomosy's Normal Form and Greibach's Normal Form.

5+5=10

(c) Remove unit productions from the following grammar:

$$S \rightarrow AB \mid a, A \rightarrow D \mid aa, B \rightarrow D \mid b, D$$

 $\rightarrow E \mid d, E \rightarrow e.$

- (a) Write down the pumping lemma for Context Free Grammar.
 - (b) Use the lemma to prove the language $L = a^n b^n c^n d^n$, $n \ge 0$ is not context free language 8
 - (c) Design a PDA which accepts a language L=aⁿ b^m where n>m and n, m ≥ 0. 8
- 6. (a) What do you mean by a problem is undecidable or decidable?
 4
 - (b) What is the halting problem of a Turing machine?
 - (c) Design a Turing machine that accepts a language L= a^m b^{2m} where m≥1.
 12

96/19/5th Sem/UCSE503