Total number of printed pages:

Programme(UZG)/3rd Sem (Back)/UCSE302

2024

Elementary Number Theory and Algebra

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

	a)	Define Euler's Phi Function. Write the properties of this function. Write some	
1.		utilities of this function. Calculate the value of $\Phi(30)$.	12 + 8
	b)	Write the RSA algorithm.	
2			
2.	a)	State the principle of mathematical induction.	
		Using the principle of mathematical induction, prove that	15+5
		$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n(n+1) = (1/3)\{n(n+1)(n+2)\}.$	- 15 + 5
	b)	The LCM of two numbers are 1200, which must not be a factor of GCD?	
		i) 600 ii) 300 iii) 500 iv) 400	
3.	a)	Covert the Binary number to Decimal number: (i)100011.110 (ii)1011101111	
			4 x 5
	b)	Covert the Octal number to Decimal number: (i)147.110 (ii) 1756	
	c)	Covert the Hexadecimal number to Decimal number: (i) ABA (ii) 15CA	
	d)	Covert the Decimal number to Binary number: (i) 0.125 (ii) 11.10	
4.	a)	Define Cyclic group. Is the cyclic group is abelian group? Explain your answer.	10+10
	b)	Show that $\{1, \omega, \omega^2\}$ is a cyclic group under multiplication. Find the generator of the group. [ω is the cube root of unity]	
5.	a)	State the Chinese Remainder Theorem. Write its applications.	5+15
	b)	Using this theorem find the value of x from,	
		$2x = 1 \pmod{5}$ $3x = 9 \pmod{6}$ $4x = 1 \pmod{7}$ $5x = 9 \pmod{11}$	
6.		Write the short note on	4 x 5
		i) Plain text and Cipher text ii) Public key and Private key	
		iii) Encryption and Decryption iv) Symmetric key and Asymmetric key	
	_		